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Preface

Welcome to Bali! Welcome to IJCDCG3 2023!

The Indonesia-Japan Conference on Discrete and Computational Geometry,
Graphs, and Games (IJCDCG3) 2023 is the 25th edition of the series of the
Japan Conference on Discrete and Computational Geometry, Graphs, and Games
(JCDCG3) has been held annually since 1997, except for 2008 and 2020. This
conference is organized by the Combinatorial Mathematics Research Group at
the Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung,
and supported by the Indonesian Combinatorial Society (InaCombS) and Tokyo
University of Science.

As in the previous editions of JCDCG3, the conference’s topics are, but are
not restricted to, Discrete Geometry, Computational Geometry, Graph The-
ory, Graph Algorithms, and Complexity and Winning Strategies of Puzzles and
Games. This year, the conference is conducted in hybrid mode, with 93 partic-
ipants from 16 countries: Australia, Belgium, Catalonia, China, France, Hun-
gary, India, Iran, Philippines, South Korea, Thailand, UK, USA, Vietnam, in
addition to Indonesia and Japan.

We want to express our gratitude to all the invited speakers: Hilda Assiy-
atun (Institut Teknologi Bandung, Indonesia), Erik Demaine (Massachusetts
Institute of Technology, USA), Miquel Angel Fiol (Universitat Politècnica de
Catalunya, Spain), Stefan Langerman (Université Libre de Bruxelles, Belgium),
Kenta Ozeki (Yokohama National University, Japan), János Pach (Rényi Insti-
tute of Mathematics, Hungary), and Nick Wormald (Monash University, Aus-
tralia), who are willing to share the knowledge in this conference. We would
also like to thank Institut Teknologi Bandung and Tokyo University of Science
for their generous support towards the organization of the conference.

We hope all participants enjoy Bali, exchange knowledge, and initiate fruitful
collaboration during the conference.

Dr. Rinovia Simanjuntak
Chair of the Organizing Committee
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Ramsey-minimal graphs for combinations
containing matchings or stars

Hilda Assiyatun

hilda@itb.ac.id

Institut Teknologi Bandung, Indonesia

Abstract

Let F,G, and H be simple graphs. The notation F → (G,H) means that for
any red-blue coloring on the edges of F , there exists either a red copy of G or a
blue copy of H. If F → (G,H) then F is called a Ramsey graph for (G,H). In
addition, if F satisfies that F − e ̸→ (G,H) for any edge e of F , then F is called
a Ramsey (G,H)-minimal graph. The set of all Ramsey (G,H)-minimal graphs is
denoted by R(G,H). The study on the Ramsey minimal graphs was initiated by
Burr, Erdős, and Lovász in 1976. In this talk, I will discuss some recent progress
in Ramsey (G,H)-minimal graphs, particularly construction methods for (G,H)
containing matchings or stars.
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New Adventures in Puzzle Fonts

Erik D. Demaine

edemaine@mit.edu

Massachusetts Institute of Technology

(This talk is based on joint work with Martin L. Demaine and others.)

Abstract

What if the way we write text, not just the text itself, expresses the mathemat-
ics we are writing about? Even further, what if reading the text requires engaging
in mathematical puzzles? In this talk, I will show several newer mathematical and
puzzle fonts that explore these questions, from pencil-and-paper puzzles to compu-
tational origami to video games to integer sequences. Figures 1 and 2 show some
examples. I will also describe some of our latest explorations into using mathemat-
ical/puzzle fonts as tools to design algorithmic art.

Figure 1: What message results if all the Tetris pieces fall straight down until they are
supported by another piece or the ground? To see the solution, visit https://erikdemaine.
org/fonts/tetris/?text=%3A%3B4548b&rot=1&puzzle=1

Figure 2: What message results if you fold this figure in half along the vertical blue line? To
see the solution, visit https://erikdemaine.org/fonts/silhouette/?text=%3A%3B4548b&
rot=1 and click on the figure.
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Token graphs of Cayley graphs as lifts

Miquel Angel Fiol

miguel.angel.fiol@upc.edu

Universitat Politècnica de Catalunya, Spain

(This talk is based on joint work with C. Dalfó, S. Pavĺıková, and J. Širáň.)

Abstract

In this talk, we describe a general method to represent k-token graphs of Cayley
graphs as lifts of voltage graphs. In particular, this allows us to construct circulant
graphs and Johnson graphs as lift graphs on cyclic groups. As an application of
the method, we derive the spectra of the considered token graphs. The method can
also be applied for dealing with other matrices, such as the Laplacian or signless
Laplacian, and to construct token digraphs of Cayley digraphs.

4



Tiling Algorithms

Stefan Langerman

stefan.langerman@ulb.ac.be

Département d’Informatique, Université Libre de Bruxelles, Belgium

Abstract

A tiling is a covering of the plane with copies of one or more geometric shapes
(tiles) without gaps or overlaps.

Tilings have been used since ancient times in construction, design and art, to
create beautiful and mesmerizing patterns. But how does a designer go about cre-
ating a set of tiles? And once these tiles are at hand, how does one assemble them
to cover the plane?

In this talk, I will go over the history of tiling algorithms, outline exciting de-
velopments from recent years, and highlight some of my favorite open problems on
the subject.
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Spanning trees in star-free graphs

Kenta Ozeki

ozeki-kenta-xr@ynu.ac.jp

Yokohama National University, Japan

Abstract

Related to Matthews–Sumner Conjecture, several sufficient conditions for the
Hamiltonicity of star-free graphs have been proven, and recently, those have been
extended to the existence of spanning trees with particular conditions, such as
spanning trees with bounded number of leaves and those with bounded maximum
degree. In this talk, I give some recent results on the topic.
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Balls and holes

János Pach

pach@cims.nyu.edu

Rényi Institute of Mathematics, Hungary

Abstract

TBA.
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The random graph d-process

Nick Wormald

nick.Wormald@monash.edu

School of Mathematical Sciences, Monash University, Australia

Abstract

A graph d-process starts with an empty graph on n vertices, and adds one
edge at each time step, chosen uniformly at random from the remaining non-edges
subject to the constraint that no vertex degree may exceed d. The final graph
must be d-regular except for at most d vertices of lower degree. Erdős posed the
question of finding the distribution of the degree sequence of the vertices in the
final graph. Once upon a time, Andrzej Rucinski and I showed, using a martingale
argument, that asymptotically almost surely the final graph is regular if nd is even,
and has just one vertex of degree less than d if nd is odd. About two decades later,
we announced new approach to analysing this process which allows us to obtain
much more accurate answers to a number of questions, such as: What is the degree
distribution at some point the process? How unlikely is it that the final graph is
not regular when nd is even? When does the last vertex of degree 0 disappear?

I will discuss recent developments in the study of the d-process, focussing on this
joint work with Rucinski, which has undergone simplifications in the intervening
time.

8
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Maximum metric embeddings

Robert D. Barish

rbarish@ims.u-tokyo.ac.jp

The University of Tokyo

(This talk is based on joint work with Tetsuo Shibuya.)

Abstract

Provided a non-negative, hollow, and symmetric distance matrix D with at most q
unique pairwise distances (specified to some finite precision), we consider variations
on the problem of finding a maximum set of points consistent with D that satisfy
the triangle inequality and can be embedded in a given metric space. In particular,
we show that deciding the existence of a set of at least k points admitting a metric
embedding is W [1]-complete for parameter k, that counting the number of such
sets is #W [1]-complete for parameter k (see Flum & Grohe [1] concerning the
#W [i] hierarchy of complexity classes), and that approximating the largest possible
cardinality set of points under this embedding constraint is at least APX-hard. In
addition, we show that these results hold ∀q ≥ 2, even in if we require embeddings
to be in ultra-metric spaces satisfying the strong triangle inequality. Finally, we
examine the applicability of well-known dichotomy theorems for Boolean Constraint
Satisfaction Problems (CSPs) to these metric embedding problems.

References

[1] J. Flum and M. Grohe: The parameterized complexity of counting problems. SIAM
J. Comput. 33(4); 2004; DOI: 10.1137/S0097539703427203.
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Enumeration on the Convex Composition of
Polygons in Lucky Puzzle

Thanatnon Keelapang, Supanut Chaidee, Piyashat Sripratak

thanatnon1008@gmail.com, supanut.c@cmu.ac.th, psripratak@gmail.com

Department of Mathematics, Faculty of Science, Chiang Mai University, Thailand

Abstract

Similar to Tangram, Lucky Puzzle consists of seven polygons combined to be a
rectangle with ratio 4 : 5 that the player has to arrange to form the desired shape.
One of the fascinating difficulties is considering the composition of the polygons
to be a convex polygon. In this investigation, we present a criterion to enumerate
the possible convex forms that can be created from the 7 polygons that make up
Lucky Puzzle. In addition, we gave the lemmas related to geometric properties to
filter some impossible solutions. We also showed that for some convex polygons that
satisfy the requirements in the lemmas, they cannot be formed by any compositions
of 7 Lucky Puzzle polygons. We observed that there are 49 solutions that satisfy
the composable requirement of being a convex polygon. Currently, we can identify
25 patterns that can be combined to form a convex polygon, while we expect that
the other 24 patterns are impossible to combine. We are currently working on the
verification of the non-composabilities of these patterns.

References

[1] Beelen, T. G. J. (2017). Finding all convex tangrams. (CASA-report; Vol. 1702).
Eindhoven: Technische Universiteit Eindhoven.

[2] Beelen, T. G. J., & Verhoeff, T. (2018). Determining the essentially different parti-
tions of all Japanese convex tangrams. arXiv preprint arXiv:1812.00746.

[3] Demaine, E. D., Korman, M., Ku, J. S., Mitchell, J. S., Otachi, Y., van Renssen,
A., ... & Uno, Y. (2020). Symmetric assembly puzzles are hard, beyond a few pieces.
Computational Geometry, 90, 101648.

[4] Wang, F. T., & Hsiung, C. C. (1942). A Theorem on the Tangram. The American
Mathematical Monthly, 49(9), 596-599.
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Runnin’ in the Rain Formula

Hiro Ito

itohiro@uec.ac.jp

The University of Electro-Communications, Tokyo, Japan

Abstract

Sometimes we hear a folk belief that the amount of wetness is the same whether
you walk or run in the rain. We can find that this is a superstition by using an
easy thought experiment: it is clear that running a very short distance (e.g., one
meter) in heavy rain and walking very very slowly will result in a distinctly different
amount of wetness.

Not very wet Soaked!

Run Walk very slowly

Figure 1: Running does not make you so wet, but walking very slowly makes you soaked.

It will not difficult to derive a formula approximating the wet volume by intro-
ducing some appropriate assumptions and using parameters expressing conditions,
e.g., the shape of the person, walking speed, the velocity of the rain, etc. We were,
however, worried about that the folk belief asserts “the same,” and we considered
why such a folk belief appeared and tried to derive an approximation formula ex-
pressing the relation. As a result we obtained the following formula.

Runnin’ in the Rain Formula: The wet amount of an average sized
person walking at normal speed in the rain (not drizzle) without strong
wind is normalized as one. Then the wet amount of him/her running/walking
x times faster in the same condition is approximated as follows.

RiR(x) =
1

2

(
1 +

1

x

)
. (1)

From this formula, we can get the following observations.

Observation 1 No matter how fast you run (even at the speed of light), you will
only get half as wet at most. (Thus we may say “the amount of wetness is not
so different whether you walk or run in the rain.”)

Observation 2 From limx→0RiR(x) = ∞, you will get wet as much as you want
by walking slowly.

12



We firstly showed this formula in the 14th research meeting on combinatorial
games and puzzles in 2019 (in Japanese) [2] and it was presented in a Japanese
magazine [3] and a media [5]. However, we have not introduced this formula in
Eanglish yet. This is the first time to present it in English.

Certainly many results on this topic have been obtained (e.g. see [1, 4]). Any
result, however, has not derived simple formulae as ours (1). The importance of
the Runnin’ in the Rain Formula is that the relation can be approximated in such
a simple formula in the average case. We consider that this has not been given so
far.

In this talk we will show how this formula was obtained and moreover our
speculation on why the folk belief has appeared.

References

[1] Alex J. DeCaria, Will You Get Wetter if You Run Rather than Walk in the Rain?,
http://snowball.millersville.edu/ adecaria/DERIVATIONS/Rain.pdf

[2] Hiro Ito, A formula of how wet if you run in the rain, The 14th research meeting on
combinatorial games and puzzles, March 10th, 2019. (in Japanese: , , 14, 2019310.)
http://www.alg.cei.uec.ac.jp/itohiro/Games/Game190310.html

[3] Hiro Ito, Runnin’ in the Rain Formula, Suugaku Seminar, Nihon Hyouron Sya, , vol.
59, no. 6, pp. 44–48, 2020. (in Japanese: , , , , 596, 44–48, 2020.)

[4] katerinaramm, Should We Walk or Run in the Rain to Get Less Wet? An Empirical
& A Mathematical Approach.
https://steemit.com/steemstem/@katerinaramm/should-we-walk-or-run-in-the-
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The maximum volume of lattice corner 3-simplices
with fixed number of interior lattice points

Takayasu Kuwata

kuwata@tokai-u.jp

Tokai University

(This talk is based on joint work with Shoto Ishida.)

Abstract

A convex polytope P ⊂ Rd is called a lattice d−polytope if all vertices of P
belong to Zd and dim(P ) = d.

For k ∈ Z≥0, let Pd(k) be the family of all lattice d−polytopes in Rd which have
exactly k interior lattice points, let Sd(k) := {S ∈ Pd(k) : S is a simplex} , and let
CSd(k) := {∆ ∈ Sd(k) : ∆ is unimodular equivalent to a corner lattice simplex},
where ∆ is called a corner d−simplex if it is defined by a system of inequalities like
x1
a1

+
x2
a2

+ · · ·+ xd
ad

≤ 1, xi ≥ 0(i = 1, 2, · · · , d) in Rd.

Fix d ≥ 1, k ≥ 0. We consider the upper bound of {Vol(P ) : P ∈ Pd(k)}, where
Vol(P ) expresses the normalized volume of P which is d! times of the usual volume
vol(P ). Since sup{Vol(P ) : P ∈ Pd(0)} = +∞ (d ≥ 1) holds, we assume k ≥ 1.

In case d = 2, Pick’s theorem and Scott’s theorem imply

max {Vol(P ) : P ∈ P2(k)} =

{
9 (k = 1),

4(k + 1) (k ≥ 2).

In case d ≥ 3, k ≧ 1, the following conjecture is in [2]:
max {Vol(P ) : P ∈ Pd(k)} = (sd − 1)2(k + 1),

where {si}i∈N is the Sylvester sequence given by s1 = 2, si = s1s2 · · · si−1 + 1.
In case d = 3, k = 1, 2, the conjecture are solved (cf. [2]).
In case of simplices, for d ≥ 4, k = 1, G. Averkov, J. Krümpelmann, B. Nill [1]

solved the conjecture:max {Vol(S) : S ∈ Sd(1)} = 2(sd − 1)2.
In case d = 3, k ≥ 3, even simplices’ case has not resolved. We restrict the

assumption of conjecture to lattice corner 3−simplices and get the following result.

Theorem 1. Let k ≥ 1 be a fixed integer. Then the maximum normalized volume
of lattice 3−simplices in CS3(k) is as follows:

max {Vol(∆) : ∆ ∈ CS3(k)} = 36(k + 1).
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StatisticalMechanics Approach for Random Single Vertex
Origami

Chihiro Nakajima

chihiro.nakajima@ait.tbgu.ac.jp

Faculty of engineering, Tohoku Bunka Gakuen University, 6-45-1 Sendai Miyagi, Japan

Abstract

We investigate the statistical property of a genrerative model of random single vertex
origami to obtain understanding for the phase transition phenomena of the flat-foldability
of single vertex origami to approach the average-case complexity of the flat-foldability
problem. Average behavior on the ensemble of instances of single vertex origami diagram
under the geometric property of them is controlled. A sudden change of the average number
of cluster spins resulting from the contraction process is observed in the vicinity of a certain
value of a geometric parameter of the diagrams.

1 Statistical Mechanics Model
The origami diagram which satisfies the necessary condition for flat-foldability required
by Kawasaki’s theorem, such as those in Fig.1(a), has a pre-folded diagram which shows
positional-relationship of the facets after they are folded, as shown in Fig.1 (b). The ver-
tical relationship or the (local) layer ordering of two facets j and k as shown in Fig.1(c),
wheather one facet of the pair is below- or above- side of the another, can be represented
by the binary variable si,k ∈ {1,−1}. For example, in the case of the figure in Fig.1(c) s j,k is
defined to take its value +1 when the facet k is above the facet j in z-axis (the direction of
height).

By representing the problem with the combination of the local layer-ordering, the flat-
foldability problem of the origami becomes the combinatorial problem. To avoid some
infeasible layer-ordering that are caused by an interpenetration of facets or so, some con-
straint terms which consists of the product of two (or four) spin variables. The binary
combination of spin variabless that satisfy all constraint terms will be corresponding to the
realizable flat-folding of the origami-sheet. The set of such constraint terms is the func-
tion to be optimized, which is called the energy function, or Hamiltonian, in the context of
physics.

The constraints on the layer-ordering are classified into the following three types.

1. An intrusion of a facet into a crease which connects other two facets.

2. Some ordering among four facets connected to each sides of the two creases which
are in geometrically coincidental position the pre-folded diagram.

3. A cyclic ordering of three facets which have areas shared with all each other in the
pre-folded diagram.

The constraint type 1 appeares in the cases such as the facet k is sandwitched between
i and j. The term which represents this constraint is described as

E(i)
i j,k =

1
2
(
1 − J(ik)(k j)siksk j

)
, (1)
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Figure 1: (a)Example of origami diagram. Each edge in the figure represents a crease. In this
figure there are no overlaps of facets. (b)Corresponding pre-folded diagram, which describes
the overlaps of facets when the figure (a) is folded along the creases. Each vertiex indicated by
the same mark is the same as that in Fig. (a). (c)Schematic picture of introduction of the Ising
variable to a local layer-ordering.

where J(ik)(k j) is the binary coefficient which is given depending on the index-labeling of
facets.

The constraint type 2 is considered in cases that there are two creases partially coincide
with each other and pairs of facets, called i, j and k, l, each connected by the creases. The
example is exhibited in Fig.2. To give such permission and prohibition of layer-orderings,
we need the product of four spin variables as

E(q)
i jkl =

1
2

(
1 − Ki jklsiksils jks jl

)
, (2)

where Ki jkl ∈ {1,−1} is each given dependently on the index-labeling.
For the constraint type 3, at first the cyclic ordering of three facets i, j, and k is de-

scribed with spin variables {si j, sik, sik} as the combinations of variables such that one of
the previous spin variables have the opposite sign from the other two. To prohibit these
combinations, the set of terms of spins are introduced as

E(c)
i jk =

1
4
(
1 − L(i j)( jk)si js jk − L( jk)(ki)s jkski − L(ki)(i j)skisi j

)
, (3)

where three coefficients L(i j)( jk) are given from the detail of the index-labeling.
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Figure 2: (Color online) (a),(b)Layer orderings of facets which are accepted under the coin-
cident of two creases. (c) Layer ordering which is NOT accepted under the coincident of two
creases. One connected pair of facets must penetrate the another connected part of the remanent
two facets.

2 Single-vertex origami diagram
Various single-vertex origami diagrams such as exhibited in Fig.1(a) are randomly gener-
ated. We asymptotically evaluate the behavior in the limit of an infinite number of facets
n → ∞ from the sequences of those with finite number of facets n = 12, 24, 48.... When
n increases as such, the number of spin variables, N, are coincidently increases as N =
66, 276, 1128....

We generated the instances so that the angle of each facet around the central vertex is
an integer multiple of a discrete unit and the value of the alternating sum around the center
is zero. The purpose of introducing a minimum unit to the angle of the facets is to make
the diagram easy to have the coincidence of the two creases. By making the minimum unit
value finer, each facet can take more diverse values, and the total number of coincidences
is to decrease. Conversely, if the value of the minimum unit is coarsened, the total number
of coincidences will increase. We can control the total number of coinsidences by changing
the value of the minimum unit.

We apply the contraction procedure introduced in the next chapter to try to reduce the
number of variables involved in the combinatorial optimization of search for flat-foldings.
As the contraction process is proceded with a polynomial time of the system size N, the
amount of computational effort is thought to be concentrated to the resulting combina-
torial optimization problem consisting of cluster spins. Tnus the number of cluster spins
is thought to be related to the essential hardness of the problem. The average number of
cluster spins contained in each instance varies systematically dependent on the number of
coincidences of two creases. A sudden change of the average number of cluster spins is
observed in the vicinity of a certain value of the number of coincidences.

3 Appendix : contraction of spin variables
When a two-body interaction term is given between two spin variables, the combination of
spin variables that satisfies the constraint is uniquely determined except for total inversion.
Therefore, we translate the constraint that prohibits intrusion into an allowed relationship
between the spin variables. For example, the energy function for the fold diagram in Fig.3
originally has 41 terms of E(i)

i j,k-type, in addition to a term of E(q)
i jkl-type and 84 terms of

17



(a) (b)

1

6

7
8

2

3

4
5

9

Figure 3: (Color online) (a)Example of origami diagram. Each edge in the figure represents
a crease. In this figure there are no overlaps of facets. (b)Corresponding pre-folded diagram,
which describes the overlaps of facets when the figure (a) is folded along the creases.

Table 1: Correspondence among cluster spins and sets of elemental spins.
Cluster spin Set of elemental spins si, j included
C1 = 1 {s1,2,−s1,3,−s1,4,−s1,5,

−s1,6,−s1,7,−s1,8, s1,9,
−s2,3,−s2,4,−s2,5,−s2,6,
−s2,7,−s2,8, s2,9, s3,4,
s3,5, s3,6, s3,7, s3,8,
s3,9, s4,7, s4,8, s4,9,
s5,7, s5,8, s5,9, s6,7,
s6,8, s6,9,−s7,8, s7,9, s8,9}

C2 = 1 {s4,5, s4,6, s5,6}

E(c)
i jk-type. In these 41 terms, a term has the form that is 1+s1,2 s2,6

2 . This term is trnslated into
the relationship that is s1,2 = −s2,6. Thus, the energy function of the fold diagram in Fig.3
is redescribed into a form consisting of 2 spin variables {C1, · · · ,C11}. See Table1 for the
relationship between variables {C1, · · · ,C11} and variables {s1,2, · · · , s9,10}. The detail of
this contraction procedure is presented at the international conference The 24th Conference
of the Japan Conference on Discrete and Computational Geometry, Graphs, and Games
(JCDCG3 2022)[1].
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Continuous Folding of the Surface of a Regular
Simplex onto its Facet

Chie Nara1,∗ and Jin-ichi Itoh2

1cnara@jeans.ocn.ne.jp, 2j-itoh@sugiyama-u.ac.jp

1Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University,
Nakano, Tokyo 164-8525, Japan

2School of Education, Sugiyama Jogakuen University, Chikusa-ku, Nagoya, Japan

We provide a new method for folding the surface of a 4-dimensional regular simplex onto
its facet continuously that requires one sixth of the entire surface for moving creases.
Whether the surface of a polyhedron of a flexible material such as paper can be flattened
without cutting or stretching is a problem that has been investigated. (See [2], p.279).
This problem was solved for all convex polyhedra in [1, 5] using moving creases to change
the shapes of some faces, which follows from Cauchy’s rigidity theorem.

We proved that any regular simplex (in general, an n-dimensional convex polytope) can
be continously folded in any (n − 1)-dimensional facet in a joint paper [1]. However,
the portions of the moving creases occupy almost the entire surface except at most two
facets. For example, for a tetrahedron using the method shown in [3, 6], the portions of
the moving creases occupy one twelfth of the entire surface, and the method in [1] results
in three fourth of the portions being occupied (see Fig. 1).
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Figure 1: Continuous flattening of the surface of a regular tetrahedron using two methods,
where the upper figures are for the method in [1] and the lower figures for the method in
[3, 6].
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Note that we proved in [4] that there is a continuous folding of the 2-dimensional skeleton,
the set of triangular faces, onto its facet. This process involves empty facet interiors.
Therefore, the situation differs from the theorem in this paper because the facets are
considered 3-dimensional bodies.

Theorem 1. The surface of a 4-dimensional regular simplex can be continuously folded
onto any of its facets such that the total volume used for the moving creases is one sixth
of the surface volume.

For points p1, p2, ..., pn with n ≥ 2 in 4-space we denote < p1p2...pn > its covexhull and
(p1p2...pn) the center (of gravity). So (p1p2) means the midpoint of p1 and p2. Let P be
the 4-dimensional regular simplex with 5 vertices {vi : i = 0, 1, 2, 3, 4} in 4-space, which
are denoted in short 0, 1, 2, 3, 4, respectively, and whose edge length is l. The outline of
the motions is as follows.

Motion of the vertices. The facet < 1234 > is fixed and the facet < 0234 > is moved
onto < 1234 > by rotating about the face < 234 >. Hence the vertex 0 is moved on the
vertex 1 along the circular arc in the circle obtained as the intersection of three 3-spheres
of the radius l with center 1, 2 and 3.

Motion of the edge < 01 >. The edge is folded in halves at the midpoint m = (01)
which is moved onto the midpoint (12) along the circular arc in the intersection of two
spheres of the radius (

√
3/2)l with center 2, 3 and the spehre of the radius l/2 with center

1 such that for each moment m stays in the hyperplane bisecting two points 1 and 0.

Motion of the three faces attaching to the edge < 01 >. Two faces < 013 > and
< 014 > are in halves folded onto < 1(12)3 > and < 1(12)4 >, respectively. The face
< 012 > is folded onto < 12(123) > with moving creases.

Then, moving creases occupy one third of the facet < 0124 > which is the pyramid
< 01(012)4 >, and one half of the facet < 0123 > which is the union of the three
pyramids < 01(012)3 >,< 12(012)(0123) >, and < 02(012)(0123) >.
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Numbers of Weights of Convex Quadrilaterals
in Weighted Point Sets

Toshinori Sakai

sakai@tokai-u.jp

Department of Mathematical Sciences, Tokai University

Abstract

Let P be a set of points in the plane. P is said to be in general position if
no three of its elements are collinear. All point sets considered in this talk are in
general position in the plane. We say P contains a convex k-gon if P contains k
elements that are vertices of a convex k-gon.

Erdős and Szekeres [2] proved that for any integer k ≥ 3, there is an integer
N(k) such that any set of at least N(k) points contains a convex k-gon. In 1984,
Erdős [1] asked the minimum number convk(n) of convex k-gons contained in a
point set with n elements. In particular, for k = 4, this problem is equivalent to
the problem of determining the rectilinear crossing number of Kn, and has been
studied extensively for a long time.

P is called a weighted point set if each point is assigned a number called a weight.
We denote by P(n) the collection of weighted point sets P with n elements each
of which receives a different weight in {1, 2, . . . , n}. For a polygon Q with vertices
in P ∈ P(n), we denote by w(Q) the sum of the weights of its vertices. Let f(P )
denote the total number of different weights of convex quadrilaterals contained in
P ∈ P(n), and let F (n) = min

P∈P(n)
f(P ). It is shown in [3] that

f4(6) = 1 and f(n) ≤ 2n− 9 for n ≥ 7.

A lower bound is also shown in [3, Theorem2]:

n− 5 ≤ F (n) for n ≥ 6.

In this talk, we show the following lower bound:

Theorem 1.
4n− 21

3
≤ F (n) for n ≥ 6.
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When Can You Tile an Integer Rectangle
with Integer Squares?

MIT CompGeom Group∗, Zachary Abel†, Hugo A. Akitaya‡,
Erik D. Demaine†, Adam C. Hesterberg§, Jayson Lynch†

Abstract

In this paper, we characterize which rectangles of integer side lengths can be
tiled by squares each of integer side length at least 2, as follows:

(I) 2× n and 4× n rectangles can tiled exactly when n is even.

(II) 3× n rectangles can be tiled exactly when n ≡ 0 (mod 3).

(III) m× n rectangles for all m ≥ 5, n ≥ 20 and m ≥ 20, n ≥ 5 can be tiled.

(IV) Table 1 specifies tileability for all remaining m,n (indeed, for all m,n < 20).

In particular, Table 1 indicates successful tilings for all 10 ≤ m,n ≤ 20, so
combined with (III), we obtain that the m × n rectangle is tileable without 1 × 1
squares for all m,n ≥ 10. Our tilings use only 2× 2, 3× 3, 5× 5, and 7× 7 squares,
so our result can also be cast in terms of restricting the set of allowed square sizes
to these four. See [1, 2] for related work on tiling rectangles with a few square sizes.

m
n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
3 ✓ ✓ ✓ ✓ ✓ ✓
4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
11 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
12 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
13 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
14 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
16 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
17 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
18 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
19 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Which integer m × n rectangles, for
2 ≤ m,n ≤ 19, admit tilings with squares
of side length at least 2. ✓ indicates when a
tiling was found by brute force. Code avail-
able at https://github.com/MIT-CompGeom/
tiling-rectangles-with-squares

Table 2: Tilings found by brute force
corresponding to✓s in Table 1 except
for dimensions with a common factor.
2× 2, 3× 3, 5× 5, and 7× 7 squares
are purple, teal, yellow, and red, re-
spectively.

∗Artificial first author to highlight that the other authors (in alphabetical order) worked as an equal
group. Please include all authors (including this one) in your bibliography, and refer to the authors as
“MIT CompGeom Group” (without “et al.”).

†Massachusetts Institute of Technology, {zabel,edemaine,jaysonl}@mit.edu
‡University of Massachusetts, Lowell, hugo akitaya@uml.edu
§Harvard University, ahesterberg@seas.harvard.edu
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On the Eigen Values of Laplace Operator
Defined on the Dodecahedron Metric Graph
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Abstract

Of concern is the eigenvalue problem of the Laplace operator on the Dodecahe-
dron metric graph. The study is part of a more general problem of the eigenvalues
of the Laplace operator on the Platonic Solids metric graphs. A compact metric
graph is a graph, in which the edges are identified by finite line segments, enabling
one-dimensional calculus to be done on this structure. Certain conditions must
be imposed on vertices, which is analogous to boundary conditions in differential
equations. In this study, the Neumann-Kirchoff condition, along with compatibility
conditions are imposed on the metric graph. The explicit computation of the eigen-
values is carried out on a mobile computer using Wolfram Mathematica. Our results
match those of Lipovsky and Exner (2019), in which heavy operator theoretic tools
were used.
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[2] Exner, P., & Lipovský, J. (2019). Spectral asymptotics of the Laplacian on Platonic
solids graphs. Journal of Mathematical Physics, 60(12). https://doi.org/10.1063/
1.5116100

[3] Harris, J. M., Hirst, J. L., & Mossinghoff, M. J. (2008). Combinatorics and Graph
Theory. http://www.springer.com/series/666

[4] Kuchment, P. (2008). Quantum graphs: an introduction and a brief survey.
https://doi.org/10.1016/j.compstruc.2012.03.001

[5] Rafova, Z. (2009). Applications of Graph Spectra (I. Gutman & D. Cvetkonic, Eds.).

26



On the stretch factor of Delaunay
triangulations of points in convex position

Xuehou Tan, Siqi Fan, Haonan Jiang
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Tokai University, Japan

(This talk is based on joint work with Rong Chen, Dalian Maritime University, China.)

Abstract

Let S be a set of n points in the plane, and let DT (S) be the planar graph of
the Delaunay triangulation of S. For a pair of points a, b ∈ S, denote by |ab| the
Euclidean distance between a and b. Denote byDT (a, b) the shortest path inDT (S)
between a and b, and let |DT (a, b)| be the total length of DT (a, b). DT (S) can be
used to approximate the complete graph of S in the sense that the stretch factor
|DT (a,b)|

|ab| is upper bounded by a constant, independent of S and n. The currently
known best factor for a set of planar points is 1.998.

In this wor, we prove that for a set S of points in convex position (i.e., they
form the vertices of a convex polygon), the stretch factor of DT (S) is 1.74. It not
only improves upon the previously known factor 1.84 for points in convex position,
but also shows a large possibility of obtaining the same stretch factor for points in
general position.
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k-Ramsey Numbers of Stars
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Abstract

For an integer k ≥ 2, a balanced complete k-partite graph of order m ≥ k is the
complete k-partite graph in which every partite set has vertices ⌊m/k⌋ or ⌈m/k⌉.
For bipartite graphs G1, G2, . . . , Gℓ and an integer k with 2 ≤ k ≤ R(G1, G2,
. . . , Gℓ), define the k-Ramsey number Rk(G1, G2, . . . , Gℓ) as the smallest positive
integer n0 such that every ℓ-coloring of a balanced complete k-partite graph of order
n0 produces monochromatic subgraph Gi in color i for some i ∈ {1, 2, . . . , ℓ}. This
definition is the generalization of k-Ramsey number introduced by Andrews et al.
in 2017. They presented a formula for the k-Ramsey number Rk(K1,s,K1,t) of every
two stars K1,s and K1,t (s, t ≥ 2) and every integer k with 2 ≤ k ≤ R(K1,s,K1,t).

In this paper, we determine the exact values for Rk(K1,n1 , . . . ,K1,nℓ
) where

k, ℓ, n1, . . . , nℓ are integers with 2 ≤ k < R(K1,n1 , . . . ,K1,nℓ
), ℓ ≥ 2, N =

∑ℓ
i=1 ni

and n1, . . . , nℓ ≥ 3 provided that N − ℓ +
⌊
N−ℓ
k−1

⌋
is even. We also give an upper

bound and a lower bound for the case that N − ℓ+
⌊
N−ℓ
k−1

⌋
is odd where the gap is

only 2.
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Abstract

Let H1 and H2 be two non-isomorphic graphs. A graph G admits an (H1|H2)-
covering if G admits neither H1-covering nor H2-covering, but each edge of G
belongs to a subgraph isomorphic to H1 or H2.

Let G admits an (H1|H2)-covering. A total labeling f of G is called an (H1, H2)-
magic if there exist two positive integers k1 and k2 such that w(H ′) =

∑
v∈V (H′) f(v)+∑

e∈E(H′) f(e) = k1 for each subgraph H ′ of G isomorphic to H1 and w(H ′′) =∑
v∈V (H′′) f(v) +

∑
e∈E(H′′) f(e) = k2 for each subgraph H ′′ of G isomorphic to

H2. In this case, G is said to be (H1|H2)-magic. Furthermore, f is called (H1|H2)-
supermagic if f(V (G)) = {1, 2, . . . , |V (G)|}.

This talk provides some forbidden subgraphs of (Cm|Sn)-magic graph for 3 ≤
n < m. For two connected graphs H1 and H2 and for two positive integersm,n ≥ 3,
we provide some necessary and sufficient conditions for mH1 ∪nH2 to be (H1|H2)-
supermagic. Finally, we characterize kCm∪lSn that is (Cm|Sn)-supermagic for every
|k − l| ≤ 1.
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Abstract

A vertex-colored connected graph G is strongly rainbow vertex-connected if
every two vertices of G are connected by a shortest path whose internal vertices
have distinct colors. Such a path is called a rainbow geodesic. The strong rainbow
vertex-connection number of G, denoted by srvc(G), is known as the minimum
number of colors needed in order to make G strongly rainbow vertex-connected. In
this paper, we estimate sharp lower and upper bounds of the strong rainbow vertex-
connection number of comb product Pn ▷oH and characterize connected graphs H
so that the strong rainbow vertex-connection number of Pn ▷o H attains the lower
bound. We also determine the exact values of the strong rainbow vertex-connection
number of Pn ▷o H for some connected graphs H.
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Let G = (V ,E) be a simple connected graph and W ⊂ V . For v ∈ V , we define the m-
code of v, denoted by mcG (v) or simply mc(v), to be the multiset of distances between
v and the vertices in W ; that is mc(v) = {d (v,w) | w ∈ W}. If every pair of distinct
vertices in G have distinct m-codes, then W is called an m-resolving set of G. If G
has an m-resolving set, then the cardinality of a smallest m-resolving set is called the
multiset dimension of G, denoted by md(G). In this paper, we show that if n ≥ 17,
then the prism Cn □ K2 has multiset dimension 3.

The multiset dimension was introduced by Saenpholphat [4] and Simanjuntak [5]. Chartrand,
et al. [1] introduced an equivalent concept called the ID number. Some of the known
results that are used in the study are enumerated below.

Proposition 1 ([1]). If G = (V ,E) is a connected graph, W a subset of V , w ∈ W , and
v ∈ V −W , then mc(w) ̸= mc(v).

Proposition 2 ([1],[4],[5]). No connected graph has multiset dimension 2.

Theorem 3 ([1],[4],[5]). A nontrivial connected graph G has md(G) = 1 if and only if G
is a path.

For the next result, let Pn be the path (0, 1, 2, . . . ,n− 1) of order n ≥ 4. We define
a symmetric subset W of V (Pn) to be one with the property i ∈ W if and only if
n− i ∈ W , for each i ∈ V (Pn).

Theorem 4 ([2]). Let n ≥ 4. If W ⊂ V (Pn) contains 0 and n− 1 and is not symmetric,
then W is an m-resolving set of Pn.

Results

Let G = (V ,E) be a simple connected graph and W a subset of V with cardinality k.
For any v ∈ V , we let mc (v) = {d1 (v) , d2 (v) , . . . , dk (v)} where di (v) ≤ di+1 (v), for i =
1, 2, . . . , k−1. For convenience, we also define sum2 (v) = d1 (v)+d2 (v) ; that is, sum2 (v)
is the sum of the two shortest distances from v to the vertices in W . Consequently, we
have the following.

Observation 5. Let G = (V ,E) be a simple connected graph and W a subset of V with
cardinality 3. If u, v ∈ V with sum2 (u) ̸= sum2 (v), then mc(u) ̸= mc(v).
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In the next theorem we construct an m-resolving set of minimum cardinality for Cn,
n ≥ 9, that is different from the set used in [1], [5], and [4] to show that md(Cn) = 3. It
can be proved using Theorem 4, Proposition 1, and Observation 5.

Theorem 6. Let n ≥ 9, G = Cn with V (G) = Zn and E (G) = {{i, i+ 1} | 0 ≤ i ≤ n− 1},
with addition done modulo n. Then W = {0, ⌊n/4⌋ , 2 ⌊n/4⌋+ 1} is an m-resolving set of
G.

In [3], Kono and Zhang have established that prisms Cn □ K2 have an m-resolving set
if and only if n ≥ 6. However, finding the minimum cardinality of such m-resolving sets
has not yet been addressed.

For the remaining discussion, we let G be the prism Cn □ K2 where n ≥ 17. We let

V (G) = {(i, j) | 0 ≤ i ≤ 1, 0 ≤ j ≤ n− 1} , and

E (G) = {{(i, j) , (i, j + 1)} | 0 ≤ i ≤ 1, 0 ≤ j ≤ n− 1} ∪ {{(0, j) , (1, j)} | 0 ≤ j ≤ n− 1} .

For i = 0 or 1, we denote the cycle ((i, 0) , (i, 1) , . . . , (i,n− 1) , (i, 0)) by Cn (i).

Suppose W ⊂ V (Cn (0)) with k elements. Then, for any j, 0 ≤ j ≤ n− 1, let u and v be
the vertices (0, j) and (1, j), respectively. Then di (v) = di (u) + 1 for any i, 1 ≤ i ≤ k,
and sum2 (v) = 2+ sum2 (u). Hence, we can make the following observation.

Observation 7. Let G = Cn □ K2 and W ⊂ V (Cn (0)) an m-resolving set of Cn (0).
Then the m-codes of the vertices of Cn (1) are distinct.

Here is our main result.

Theorem 8. Let G = Cn □ K2. Then W = {(0, 0) , (0, ⌊n/4⌋) , (0, 2 ⌊n/4⌋+ 1)} is an
m-resolving set of G. Hence, md(G) = 3.
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Abstract

Let G = (V (G), E(G)) be a simple, connected, and finite graph. For any k ∈ N,
a rainbow vertex k-coloring of G is a function c : V (G) −→ {1, 2, ..., k} such that for
every two distinct vertices u and v in V (G) there exists a u−v path whose internal
vertices have distinct colors. Such path is called a rainbow vertex path. The rainbow
vertex connection number of G, denoted by rvc(G), is the smallest positive integer
k so that G has a rainbow vertex k-coloring. For i ∈ {1, 2, ..., k}, let Ri be the set
of vertices with color i and Π = {Ri, R2, ..., Rk} be an ordered partition of V (G).
The rainbow code of a vertex v of V (G) with respect to Π is defined as the k-tuple
rcΠ(v) = (d(v,R1), d(v,R2), ..., d(v,Rk)), where d(v,Ri) = min{d(v, y)|y ∈ Ri} for
each i ∈ {1, 2, ..., k}. If every vertex of G has distinct rainbow codes, then c is called
a locating rainbow k-coloring of G. The locating rainbow connection number of G,
denoted by the rvcl(G), is defined as the smallest positive integer k such that G
has a locating rainbow k-coloring.

Let G and H be two graphs on disjoint sets of |V (G)| and |V (H)| vertices,
|E(G)| and |E(G)| edges, respectively. The edge corona of G and H denoted by
G ⋄H is defined as the graph obtained by taking one copy of G and E(G) copies
of H, and then joining two end-vertices of the j-th edge of G to every vertex in
the j-th copy of G, for j ∈ {1, 2, ..., |E(G)|}. In this paper, we determine the upper
and lower bounds of the locating rainbow connection number for the class of graphs
resulting from the edge corona of a tree with a complete graph. Furthermore, we
demonstrate that these upper and lower bounds are tight.
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Abstract

In this work, we study how far one can deviate from optimal behavior when
drawing a planar graph on a plane. In particular, we define the plane saturation
number, ps(G), of a planar graph G as the minimum number of edges in a subgraph
H ⊆ G such that there exists a planar embedding of H where adding any edge
(possibly with a new vertex) to the embedding would either violate planarity or
make the resulting graph no longer a subgraph of G.

We investigate how small ps(G) can be relative to the number of edges, |E(G)|,
in G. While there exist planar graphs where ps(G)/|E(G)| is arbitrarily close to 0,
we show that for all twin-free planar graphs, ps(G)/|E(G)| > 1/16, and that there
exist twin-free planar graphs where ps(G)/|E(G)| is arbitrarily close to 1/16.
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Abstract

The k-token graph Fk(G) of a graph G is the graph whose vertices are the k-
subsets of vertices from G, two of which being adjacent whenever their symmetric
difference is a pair of adjacent vertices in G.

In this talk, we are going to present a general method to find the spectrum and
eigenspaces of the k-token graph Fk(Cn) of a cycle Cn. This method is based on
the theory of lift graphs and the recently introduced theory of over-lifts, which are
going to explain.
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Abstract

The problem of determining the metric dimension of a graph is well-known to be
NP-complete. Thus, there is no efficient algorithm to solve this problem in general.
On the other hand, as computation developments have grown rapidly for the last
century, the use of matrices to represent a graph has given many useful facts to
determine the structure of the graph, e.g., by using their spectrum. Moreover, the
algorithms for finding the eigenvalues of a matrix have been developed such that
their computation is relatively quick. Therefore, we pose the following question: is
there any connection between the metric dimension of a graph and its spectrum?
In this talk, we present some positive results on this question.
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Abstract

In 2014, Carpentier et al. introduced the concept of the rainbow connection in
hypergraphs. This concept is an extension of the rainbow connection in a graph
introduced by Chartrand et al. in 2008. This concept has been implemented on an
r-uniform minimally connected hypergraph, an r-uniform cycle hypergraph, and an
r-uniform complete multipartite hypergraph. In our research, we apply this concept
to s-overlapping r-uniform hypergraphs with size t. Let r ≥ 2, 1 ≤ s < r, and t ≥ 1
be integers. An s-overlapping r-uniform hypergraph with size t, denoted by Hr

s,t,
is an r-uniform connected hypergraph where s is the maximum cardinality of the
vertex set resulting from the intersection of each pair of edges in the hypergraph. In
our initial result, we determined the rainbow connection number of an s-overlapping
r-uniform interval hypergraph with size t, denoted by Pr

s,t. The hypergraph Pr
s,t =

(X(Pr
s,t), E(Pr

s,t)) has the vertex set X(Pr
s,t) = {v1, v2, . . . , v(t−1)(r−s)+r} and the

edge set E(Pr
s,t) = {E1, E2, . . . , Et} where

Ei = {v(i−1)(r−s)+1, v(i−1)(r−s)+2, . . . , v(i−1)(r−s)+r} for all i ∈ {1, 2, . . . , t}.

In this talk, we determine the rainbow connection number of an s-overlapping r-
uniform homogeneous caterpillar hypergraph.
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Abstract

For a graph G, a bijection f : V (G) → [1, |V (G)|] is a local inclusive distance
antimagic (LIDA) labeling of G if w(u) ̸= w(v) for every two adjacent vertices u, v ∈
V (G) with w(u) = f(u) +

∑
x∈N(u) f(x), or equivalently, w(u) =

∑
x∈N [u] f(x). A

graph is said to be local inclusive distance antimagic (LIDA) if it admits a LIDA
labeling. Observe that w is a proper coloring of G. Thus, if f is a LIDA labeling
of G, then the function w is referred as the coloring of G induced by f , and the
number w(u) is referred as the color (or weight) of the vertex u ∈ V (G). The local
inclusive distance antimagic chromatic number of G, denoted by χlida(G), is the
minimum number of colors taken over all colorings induced by LIDA labelings of G.
We determine χlida(G) for some classes of graphs G. In this paper, we investigate
the LIDA chromatic number of several classes of graphs and some graph operations.
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Abstract

The concept of locating chromatic number is a marriage between the partition di-
mension and coloring of a graph, first introduced by Chartrand et al in 2002 [1].
The locating chromatic number of a graph is a newly interesting topic to study
because there is no general theorem for determining the locating chromatic number
of any graph. Let G = (V,E) be a connected graph. We define the distance as
the minimum length of path connecting vertices u and v in G, denoted by d(u, v).
A k-coloring of G is a function c : V (G) → {1, 2, . . . , k} where c(u) ̸= c(v) for
any two adjacent vertices u and v in G. Thus, the coloring c induces a partition
Π of V (G) into k color classes (independent sets) C1, C2, . . . , Ck where Ci is the
set of all vertices colored by the color i for 1 ≤ i ≤ k. The color code cΠ(v) of
a vertex v in G is defined as the k-vector (d(v, C1), d(v, C2), . . . , d(v, Ck)) where
d(v, Ci) = min{d(v, x) : x ∈ Ci} for 1 ≤ i ≤ k. The k-coloring c of G such that
all vertices have different color codes is called a locating coloring of G. The locating
chromatic number of G, denoted by χL(G), is the minimum k such that G has a
locating coloring.

The corona operation of Pn and Cm, denoted by Pn ⊙ Cm) is defined as the graph
obtained by taking one copy of Pn and |V (Pn)| copies of Cm and then joining all
the vertices of the ith -copy of Cm with the ith-vertex of Pn [2]. In this paper, we
will discuss the locating chromatic number for the corona operation of path and
cycle. The locating chromatic number of Pn⊙C3 is 5 for 3 ≤ n < 7 and 6 for n ≥ 7.
Next, χL(Pn ⊙ C4) is 5 for 3 ≤ n < 6 and 6 for n ≥ 6.

Keywords : Locating chromatic number, Corona operation.
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Abstract

A graph with an edge coloring is good PRCF (proper rainbow-cycle-forbidding)
if it uses the proper edge-coloring and has absolutely no rainbow cycles. If these
criteria are not fulfilled, then the graph is called bad PRCF. Proper edge coloring
defines the boundary that each adjacent vertices cannot have a same color. With this
coloring, it is quite difficult to find a graph that contains rainbow cycles with girth
greater than five. In this research, edge coloring with stricter rules was used, namely
strong edge coloring. Strong edge coloring has a rule that every two adjacent edges
and two edges with the same neighbor, cannot get the same color. This coloring
makes it possible to obtain a rainbow cycle with a larger girth. That way, many
graphs can be included in the scope of this research, especially graphs that contain
cycles with a girth of more than 5, as well as each of its characteristics. Using strong
edge coloring also termed in this research that a graph with strong edge coloring and
does not contain rainbow cycles as good SRCF (strong rainbow-cycle-forbidding)
and if one or both things are not fulfilled then it is called bad SRCF. This research
also introduces joint k-distance graphs between two labeled graphs, namely graphs
obtained by connecting the i-th vertex in the first graph to vertices of distance
k from the i-th vertex in the second graph. Joint k-distance is used because it is
possible to form a cycle on the constructed graph. For joint k-distance of some
special graph, the maximum girth value of the cycle is obtained. The maximum
value of girth of the rainbow cycle is also obtained.
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Abstract

This paper limits graphs to simple, finite, and connected graphs. Let ℓ be an
integer, G and H be graphs, V (G) be the set of vertices of graph G, and E(G)
be the set of edges of graph G. A rainbow vertex ℓ-coloring of G is a function
f :V (G)→{1, 2, . . . , ℓ} such that for every two distinct vertices in G, there exists a
rainbow vertex path that connects the vertices. A rainbow vertex path is a path
whose internal vertices have distinct colors. For a vertex v ∈ V (G) and a subset
R ⊆ V (G), the distance between v and R is d(v,R) = min{d(v, x)|x ∈ R}. For
i ∈ {1, 2, . . . , ℓ}, let Ri be the set of vertices with color i. Form an ordered partition
Π = {R1, R2, . . . , Rℓ} of V (G). The rainbow code of a vertex v with respect to Π
is defined as the ℓ-tuple

rcΠ(v) = (d(v,R1),d(v,R2), . . . ,d(v,Rℓ)).

If rcΠ(v) ̸= rcΠ(w) for every two distinct vertices v, w ∈ V (G), then f is called
a locating rainbow ℓ-coloring of G. The smallest positive integer ℓ such that G has
a locating rainbow ℓ-coloring is called the locating rainbow connection number of
G, denoted by rvcl(G).

An orientation of an undirected graph G is an assignment of precisely one di-
rection to each of the edges of G. Let O be an orientation of G and e⃗ be an oriented
edge of H. The edge-comb product of G (under the orientation O) and H on e⃗,
denoted by Go▷e⃗H, is a graph obtained by taking one copy of G and |E(G)| copies
of H and identifying the j-th copy of H at the edge e⃗ to the j-th edge of G, where
the two edges have the same orientation.

In this paper, we determine the locating rainbow connection number of the
edge-comb product of a path with a complete graph and a complete graph with a
complete graph.
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Abstract

Let c be the edge coloring of a graph G. A rainbow u-v geodesic in G is a
shortest path between u and v with all edges has different color. Graph G is said to
be strongly rainbow connected if every pair of vertices in G connected by a rainbow
geodesic. The strong rainbow connection number of G, src(G), is the minimum
number of colors needed to make G strongly rainbow connected. Let d be a positive
integer, d-local strong rainbow coloring such that every pair of vertices of distance
up to d connected by rainbow geodesic. A d-local strong rainbow connection number
of G, lsrcd(G), as the minimum number of colors needed to make G being d-
local strong rainbow connected. In this talk, we give the strong rainbow connection
number and d-local strong rainbow connection number of corona product of graph
that involving a wheel graph.
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Abstract

A disconnected graph G is called a cluster if each component of G is a complete
graph with order at least two. That is, G =

⋃n
i=1Kpi(n ≧ 2, pi ≧ 2). J. Akiyama, K.

Ando and D. Avis showed in Lemma 2.1 of [1] thatG is equi-eccentric if the eccentric
graph Ge is a cluster. In this paper we determined all graphs whose eccentric graphs
are clusters, which is an extension of Lemma 2.1 in [1]. We also mention a few
applications of eccentric graphs.

Let G = (V (G), E(G)) be a simple undirected graph. A disconnected graph G is called a
cluster if it is union of complete graphs

⋃n
i=1 Kpi(n ≧ 2, pi ≧ 2).

The eccentricity e(v) of a vertex v in V (G) is defined by e(v) = maxu∈V (G) d(u, v),
where d(u, v) stands for the length of the shortest path in G between u and v. We denote
by Ge = (V (Ge), E(Ge)) the eccentric graph based on G, where the vertex set V (Ge)
is identical to V (G) and uv ∈ E(Ge) ⇔ d(u, v) = min(e(u), e(v)). We denote r(G) the
radius of a graph G, which is defined as r(G) = minv∈V (G) e(v). The complement of a
graph G is denoted by G.

The following theorems are our main results.

Theorem 1. If r(G) ≧ 2, then (G+Kn)e = (G+Kn) = G ∪Kn, n ≧ 2.

Theorem 2. A graph whose eccentric graph is a cluster, i.e., Ge = ∪n
i=1Kpi(n ≧ 2, pi ≧ 2

for any i(1 ≦ i ≦ p),Σn
i=1pi = p), if and only if G is either a cycle C2p or a complete

n-partite graph K(p1, p2, . . . , pn).

The following figure shows an example of Ge obtained from G = K(2, 2, 3).
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Abstract

Let G be a simple graph with vertex set V (G). A coloring (or labeling) of a
graph G is a partition of the vertices of G into classes, called the color classes. If
a coloring contains exactly n disjoint non-empty color classes, then it is called an
n-coloring. We say that a coloring with color classes {V1, . . . , Vℓ} of G is distin-
guishing labeling if there is no non-trivial automorphism f of G with f(Vi) = Vi
for all i = 1, . . . , ℓ. We denote the minimum such ℓ by D(G) and is called distin-
guish number of G. A distinguishing labeling is distinguishing coloring (or proper
distinguishing coloring) if it provides a proper coloring for G. The distinguishing
chromatic number of a graph G, denoted by χD(G), is the minimum ℓ such that
{V1, . . . , Vℓ} is distinguishing coloring. In 2006, Collins and Trenk proposed this col-
oring and called proper distinguishing coloring (or distinguishing coloring) [2]. This
coloring has attracted the attention of researchers in a short period of time and
many articles have been published about it. In [3], Harary, Hedetniemi, and Robin-
son introduced and studied the uniquely colorable graphs. In their work ‘coloring’
means that ‘proper coloring’.

We say that a graph is uniquely distinguishing n-colorable if it has exactly one
distinguishing n-coloring. Furthermore, we say a graph is uniquely distinguishing
colorable if there is only one partition of its vertex set into the smallest possible
number of distinguishing color classes. Actually a uniquely distinguishing colorable
graph is a uniquely distinguishing χD(G)-colorable. The symbols of distinguishing
coloring of G will always denote [χD(G)]. Any unexplained basic definitions in graph
theory comes from [1].

In this talk, we present some results on uniquely distinguishing graphs, because
of their applications in computing the distinguishing chromatic number of discon-
nected graphs. For this propose, we introduce two families of uniquely distinguishing
colorable graphs, named them type 1 and type 2, and show that every disconnected
uniquely distinguishing colorable graphs are the union of two isomorphic graphs of
type 2. Also, we review the characterization of all graphs G of order n with property
that χD(G ∪G) = χD(G) = k, where k = n− 1, n.
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Abstract

In 2002, Chartrand et al introduced a coloring that we know as locating coloring
[1]. In this coloring, the goal is to distinguish the vertices of a graph by their distance
from a partition of the vertex set. Here, our goal is to distinguish the vertices of
a connected graph by the distance of the matchings that partition the edge set.
An edge locating coloring of a simple connected graph G is a partition of its edge
set into matchings such that the vertices of G are distinguished by the distance
of the matchings. The minimum number of the matchings of G that admitting an
edge locating coloring is the edge locating chromatic number of G, and denoted
by χ′

L(G). In fact, we can see this definition as the edge version of the locating
coloring.

In this talk we initiate to introduce the concept of edge locating coloring, and
determine of exact value χ′

L(G) of some custom graphs. The graphs G with χ′
L(G) ∈

{2,m} are characterized where m is the size of G. We investigate the relationship
between order, diameter and edge locating chromatic number of G. For a complete
graph Kn, we obtain the exact value of χ′

L(Kn) and χ′
L(Kn − M) where M is

a maximum matching, indeed this result is also extended for any graph. We will
determine the edge locating chromatic number of join graph G+H, where G and
H are some well known graphs. In particular, for any graph G, we show that, there
exists a relationship between χ′

L(G+K1) and ∆(G). We investigate the edge locating
chromatic number of trees and present a characterization bound for any tree in
terms of maximum degree, leaves and the support vertices of trees. Moreover, we
prove that any edge locating coloring of a graph is an edge distinguishing coloring.
Finally, we present some open problem.
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Abstract

Graph theory and matroid theory are interconnected because matroids provide
a way to generalize and analyze the structural and independence properties found
in graphs. Chun, Mayhew, and Oxley [1] have proven a chain theorem for internally
4-connected binary matroids and have provided a detailed analysis of the operations
to produce such matroids. The primary focus of our study is to extend this matroid
result to internally 4-connected graphs.
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Abstract

While Turán type problem is the most studied topic in extremal combinatorics,
some of the most basic bipartite degenerate Turán problems remain elusive. In
this talk, I will discuss some recent advancements on this topic and new results on
bipartite graphs arising from geometric shapes and periodic tilings commonly found
in nature, including even prisms, planar hexagonal tiling and quadrangulations of
plane, cylinder and torus.
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Abstract

Let H1 and H2 be non-isomorphic graphs. A graph G is said to admit (H1, H2)-
covering if every edge e ∈ E(G) is contained in either a subgraph H1 or H2 of
G. Let f : V (G) ∪ E(G) → [1, |V (G)| + |E(G)|] be a bijection of a graph G. The
labeling f is called (H1, H2)-magic labeling if G admits (H1, H2)-covering and there
exists magic constants m1 and m2 such that

w(H1) =
∑

v∈V (H1)

f(v) +
∑

e∈E(H1)

f(e) = m1

for every subgraph H1 of G and

w(H2) =
∑

v∈V (H2)

f(v) +
∑

e∈E(H2)

f(e) = m2

for every subgraph H2 of G. Moreover, an (H1, H2)-magic labeling f is (H1, H2)-
supermagic labeling if {f(v) | v ∈ V (G)} = [1, |V (G)|]. The graph G is (H1, H2)-
(super)magic if G admits (H1, H2)-(super)magic labeling. In this paper, we present
some new (H1, H2)-magic graphs.
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Abstract

For any simple graphs F,G and H, let us define F → (G,H) if for any red-
blue coloring on the edges of graph F , there exists either a red copy of G or a
blue copy of H. A graph F is called a Ramsey graph for (G,H) if F → (G,H).
Additionally, if the graph F satisfies that F − e↛ (G,H) for any edge e of F , then
F is called a Ramsey (G,H)-minimal graph. The set of all Ramsey (G,H)-minimal
graphs is denoted by R(G,H). The most recently related results about some classes
of graphs that belong to R(C4,K1,n) were already done by Nabila et al. [1] that
use paths to construct the theta-path graphs and Assiyatun et al. [2] that use any
tree to construct the theta-tree graphs. In this research, we construct some Ramsey
(C4,K1,n)-minimal graphs that are based on a unicylic graph for any n ≥ 2.
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Abstract

Let G be a graph with vertex set V (G) and diameter diam(G). Let D ∈
{0, 1, 2, 3, . . . , diam(G)} and g be a bijection from V (G) to {1, 2, 3, . . . , |V (G)|}.
For two vertices u, v ∈ V (G), the distance between u and v is denoted by d(u, v).
The D-neighborhood of a vertex v ∈ V (G) is denoted and defined by ND(v) = {u ∈
V (G) : d(u, v) ∈ D} and its D-weight is wD(v) =

∑
u∈VD(v) g(u). If wD(v) is a con-

stant for every vertex v V (G), then the graph G is called D-distance magic and g
is called a D-distance magic labeling of G. If wD(v) ̸= wD(u) for every u, v ∈ V (G),
then G is called D-distance antimagic. In particular, if {wD(v) : v ∈ V (G)} is a
set {a, a+ d, a+2d, . . . , a+ (|V (G)| − 1)d}, where a > 0 and d ≥ 0 are fix integers,
then G is called (a, d)-D-distance antimagic. In these cases, g is called a D-distance
antimagic labeling and an (a, d)-D-distance antimagic labeling of G, respectively. In
this talk, we give some necessary conditions for shadow graph of a regular graph to
be D-distance magic as well as (a, d)-D-distance antimagic. Also, we prove the exis-
tence and nonexistence of the D-distance magic labeling and the (a, b)-D-distance
antimagic labeling of shadow graph of cycles and complete bipartite graphs for
D = {1}, {0, 1}, {2}, and {0, 2}.
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Abstract

In this talk, we improve the lower bound of treewidth shown by Chandran and
Subramanian [1]. Let tw(G), ∆, λ denote the treewidth, the maximum degree, and
the second smallest eigenvalue of the Laplacian matrix of a graph G with n vertices,
respectively. Chandran and Subramanian [1] show that tw(G) ≥ 3λn

4∆+8λ − 1. We
show that

tw(G) ≥ λn

∆+ λ
− 1,

using the balanced-separator technique for treewidth computation by Robertson
and Seymour [3] and properties of the Laplacian matrix. Previously, we presented
a weaker improvement [2], which shows that tw(G) ≥ min{ 3λn

4∆+3λ ,
4λn

4∆+6λ}− 1. The
new lower bound is almost tight in the sense that for an infinite class of graphs the
bound is only 1 smaller than the actual treewidth.
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Abstract

Let G = (V,E) be a (finite connected) graph and D = [d(x, y)]x,y∈V its distance
matrix. It is well known, tracing back to Schoenberg (1935-37), that G admits a
quadratic embedding in a Euclidean space, i.e., there exists a map ψ : V → RN

such that ∥ψ(x) − ψ(y)∥2 = d(x, y) for x, y ∈ V , if and only if D is conditionally
negative definite. This motivated us to define the quadratic embedding constant (QE
constant for short) of G by

QEC(G) = max{⟨f,Df⟩ ; f ∈ C(V ), ⟨f, f⟩ = 1, ⟨1, f⟩ = 0},

where C(V ) is the space of column vectors indexed by V , and 1 is the one of
which entries are all one. Classification of graphs by means of QE constants is a
relatively new challenge since the concept was introduced in Obata–Zakiyyah (2018)
and Obata (2017). In this talk we will report some recent results in particular, on
non-QE graphs and show some questions.
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Abstract

Let G be a simple and finite graph of positive size q and let t be a positive integer
with

(
t+1
2

)
≤ q <

(
t+2
2

)
. G is said to have an ascending subgraph decomposition

(ASD) if G can be decomposed into t subgraphs H1, H2, . . . ,Ht without isolated
vertices where Hi is isomorphic to a proper subgraph of Hi+1 for 1 ≤ i ≤ t − 1.
(Alavi et. al., 1987)

In this talk, we introduce a new type of magic labeling. Let G admit an ASD
with subgraphs H1, H2, . . . ,Ht and f a bijective mapping from V (G) ∪ E(G) to
{1, 2, . . . , |V (G)| + |E(G)|}. The weight of a subgraph Hi (1 ≤ i ≤ t) is defined as
w(Hi) =

∑
v∈V (Hi)

f(v) +
∑

e∈E(Hi)
f(e). If all subgraphs have the same weight,

i.e., there exists a positive integer k such that w(Hi) = k ∀i ∈ [1, t], then f is called
a magic ASD labeling for G. Additionally, we characterize complete graphs, stars,
paths, and cycles admitting magic ASD labelings.
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Abstract

Let G(V,E) be a simple connected graph with the vertex-set V and the edge-
set E. A vertex k-labeling on G is an onto mapping f : V (G) → {1, 2, · · · , k}. The
distinguishing number of G, denoted by D(G), is the least natural number k such
that G has a vertex k-labeling that is preserved only by the trivial automorphism.
In this talk, we will show among all trees of radius two, there are 1552 trees having
distinguishing number three.

Keywords: distinguishing number, graph automorphism, labeling, tree
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Abstract

An edge-coloring of a graph G is called a rainbow if any two vertices are con-
nected by a path consisting of edges of different colors. The strong rainbow connec-
tion number is an extension of the rainbow connection numbers, where it refers to
the shortest path, commonly known as the geodesic path. If G is a connected graph
and every pair of vertices in G has a geodesic path whose edges are not the same
color, G is strongly rainbow-connected. The rainbow and strong rainbow connection
numbers of graph G, denoted by rc(G) and src(G), respectively, are the minimum
number of colors needed to make G rainbow and strongly rainbow-connected. This
study is interesting, and recently, many papers have been published about it. Some
previous results only gave the lower and upper bound of rc(G) and src(G). Thus,
finding an exact value of rc(G) and src(G) is significantly challenging. In this paper,
we determine the exact values of rainbow and strong rainbow connection number of
two classes of windmill graphs such as French windmill graph and Dutch windmill
graph, and also certain generalizations of these graph.
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Abstract

Let G = (V (G), E(G)) be a graph and k be a positive integer. A vertex k-
labeling f : V (G) → {1, 2, . . . , k} is called an edge irregular labeling if there are no
two edges with the same weight, where the weight of an edge uv is f(u) + f(v).
The edge irregularity strength of G, denoted by es(G), is the minimum k such
that G has an edge irregular k-labeling. This labelings were introduced by Ahmad,
Al-Mushayt, and Bača in 2014. In this paper, we determine the edge irregularity
strength of banana tree and disjoin union of firecracker graphs.
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Abstract

An L(2, 1)-labeling of a graph G is a function f : V (G) → {0, 1, 2, . . . , k} such
that every two distinct vertices u, v ∈ V (G) satisfies |f(u) − f(v)| ≥ 2 if their
distance is 1, and |f(u) − f(v)| ≥ 1 if their distance is 2. The smallest number k
such that G admits an L(2, 1)-labeling, is called the L(2, 1)-labeling number of G.
In this paper, we consider the comb product graphs. Let G and H be connected
graphs, and o ∈ V (H). The comb product between G and H at vertex o, denoted
by G ▷o H, is a graph obtained from a copy of G and |V (G)| copies of H, then
identifying the vertex o of the i-th copy of H to the i-th vertex of G. In this paper,
we provide the sharp general bounds of the L(2, 1)-labeling number of G ▷o Kn

for any connected graphs G. We also determine an exact value of L(2, 1)-labeling
number ofG▷oKn for some families of graphG, including paths, stars, and complete
graphs.
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Abstract

Given two graphs G and H. The least natural integer r such that any graphs F
on r vertices satisfy either F has a copy of G or F contains a copy of H, is known
as the graph Ramsey number R(G,H). In this talk, we study the graph Ramsey
numbers R(Tn, F1,m) where Tn is a tree of order n, which is not a star, having
maximum degree at least n− 3, and F1,m is a fan of order m+ 1, with odd m.
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Abstract

The species-habitat network (JSH) concept was introduced by Marini et al.
(2019). The network has two sets of vertices: species and habitat. The edge on the
network is defined as the occurrence of an animal in a location. The adjacency
matrix of the network is called the species-habitat matrix. Two matrices related
to ecology are constructed from this matrix: the species interaction matrix and the
habitat occupancy matrix. Two matrices related to ecology are formed from this
matrix: the species interaction matrix and the habitat occupancy matrix. Next,
influence and dominance indices are obtained from these two matrices. We use these
concepts to examine our dataset from the Bungo Area, Kerinci Seblat National
Park.
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Abstract

A rainbow geodesic in an edge-colored graph is the shortest path with all edges
having different colors. A graph G is strongly rainbow connected if a rainbow
geodesic connects every pair of vertices inG. The strong rainbow connection number
of G, src(G), is the minimum number of colors needed to make G strongly rainbow
connected. Let d be a positive integer, a graph G is a d−local strong rainbow con-
nected if a rainbow geodesic connects every pair of vertices of distance up to d. The
d−local strong rainbow connection number of G, lsrcd(G), is the minimum number
of colors in the d−local strong rainbow coloring of G. In this talk, we present the
d−local strong rainbow connection number of amalgamation of cycles.

References

[1] G. Chartrand, G.L. Johns, K.A. Mc Keon, and P. Zhang, Rainbow connection in
graphs, Mathematica Bohemica, 133(1) (2008), 85–98.

[2] F. Septyanto and K.A. Sugeng, Distance-local rainbow connection number, Discus-
siones Mathematicae Graph Theory, 42(4) (2022), pp. 1027–1039.

64



Is it Possible to Have Constant Modular
Irregularity Strength of Graph

Kiki A. Sugeng

kiki@sci.ui.ac.id

Universitas Indonesia

(This talk is based on joint work with M. Augurius.)

Abstract

In this talk, we consider a simple and finite graph G with order n. In 1988,
Chartrand et al. defined an irregular labeling as an edge k-labeling f : E(G) →
{1, 2, . . . , k}, for a positive integer k, where the vertex weights are different for all
vertices. The vertex weight for a vertex v is the sum of all edge labels which is
incidence to v. The minimum number k for this labeling is called the irregularity
strength of a graph G and is denoted by s(G). In 2020, Bača et al. introduced the
variation of irregular labeling in modular version. Modular irregular labeling of a
graph G is an edge k-labeling f : E(G) → {1, 2, . . . , k} such that the modular
weight, which is defined by wtf = Σ(v ∈ N(u))f(uv)(mod n), of all vertices are
all different. The modular irregularity strenght of a graph G, denoted by ms(G),
is a minimum number k such that a graph G has modular irregular labeling with
the largest label k. In this talk, we discuss the possibility that a graph can have a
constant modular irregularity strength.
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Abstract

For a simple graph G(V,E) and a positive integer k, a vertex irregular total
k-labeling of G is a mapping φ : V ∪ E → {1, 2, . . . , k} such that wt(x) ̸= wt(y)
for any two distinct vertices x, y ∈ V , where wt(x) = φ(x) +

∑
xz∈E φ(xz). The

minimum k for which G has a vertex irregular total labeling is called the total vertex
irregularity strength of G and it is denoted by tvs(G). Finding the total vertex
irregularity strength of arbitrary graphs is a difficult and challenging problem; see
[1, 2, 4, 5, 6, 7] for a few results on this topic.

In 2010, Nurdin, Baskoro, Salman and Gaos [3] posed two conjectures regarding
the total vertex irregularity strength of trees and general graphs as follows: (i) for
every tree T , tvs(T ) = max{⌈(n1+1)/2⌉, ⌈(n1+n2+1)/3⌉, ⌈(n1+n2+n3+1)/4⌉},
and (ii) for every graphG with minimum degree δ and maximum degree ∆, tvs(G) =
max{⌈(δ +∑i

j=1 nj)/(i+ 1)⌉ : i ∈ [δ,∆]}, where nj denotes the number of vertices
of degree j.

In this talk, we disprove the above-mentioned conjectures by giving infinite
families of counterexamples.
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Abstract

In graph theory, one area that has received much attention from researchers is
the area of neighbor-distinguishing colorings (i.e., colorings that induce a proper
vertex coloring) [1, p. 756]. One such coloring is the set coloring [2]. For a nontrivial
graph G, let c : V (G) → N and define the neighborhood color set NC(v) of each
vertex v as the set containing the colors of all neighbors of v. The coloring c is called
a set coloring if NC(u) ̸= NC(v) for every pair of adjacent vertices u and v of G.
The minimum number of colors required in a set coloring is called the set chromatic
number of G and is denoted by χs(G). In recent years, set colorings have been
studied with respect to different graph operations such as join [3, 5], comb product
[5], middle graph [4, 6], and total graph [7]. Continuing the theme of these previous
works, we aim to investigate set colorings of the Cartesian product of graphs. In this
work, we investigate the gap given by max{χs(G), χs(H)}−χs(G □ H) for graphs
G and H. In relation to this objective, we determine the set chromatic numbers of
the Cartesian product of some graph families.

References

[1] G. Chartrand, F. Okamoto, and P. Zhang, The sigma chromatic number of a graph,
Graphs Combin. 26 (2010), 755–773.

[2] G. Chartrand, F. Okamoto, C. W. Rasmussen, and P. Zhang, The set chromatic
number of a graph, Discuss. Math. Graph Theory 29 no. 3 (2009), 545–561.

[3] F.Okamoto, C.W.Rasmussen, and P.Zhang, Set vertex colorings and joins of graphs,
Czechoslovak Math. J. 59 no. 4 (2009), 929–941.

[4] G. J. Eugenio, M.-J. P. Ruiz, and M. A. C. Tolentino, The set chromatic numbers
of the middle graph of graphs, J. Phys. Conf. Ser. 1836 (2021).

[5] B. C. Felipe, A. D. Garciano, and M. A. C. Tolentino, On the set chromatic number
of the join and comb product of graphs, J. Phys. Conf. Ser. 1538 (2019).

[6] M. A. C. Tolentino and G. R. J. Eugenio, The set chromatic numbers of the middle
graph of tree families, Int. J. Math. Comput. Sci. 18 no. 3 (2023), 509–519.

[7] M. A. C. Tolentino, G. R. J. Eugenio, and M.-J. P. Ruiz, On the total set chromatic
number of graphs, Theory Appl. Graphs 9 no. 2 (2022).

68



No-three-in-line games on graphs

James Tuite

james.t.tuite@open.ac.uk

Open University

(This talk is based on joint work with Sandi Klavžar and Jing Tian.)

Abstract

The general position problem originates with a puzzle of Dudeney on how to
place pawns on a chessboard without three pawns being in a line. In the context
of graph theory, we say that a set S of vertices of a graph G is in general position
(or no-three-in-line) if no shortest path in G contains three vertices of S [2]. The
general position number is the number of vertices in a largest general position set.

Inspired by the fields of game colouring and domination games, as well as the
achievement game considered in [1], in this talk we discuss general position sets that
are constructed through adversarial play. Two players, Builder and Blocker, take it
in turns to choose vertices to add to a general position set S, always maintaining
the no-three-in-line property. However, the goals of the players are diametrically
opposed; Builder wishes to make the set S as large as possible, whilst Blocker
wishes to minimise the size of S.

We determine the result of this game on graph families including trees, cycles,
Kneser graphs and line graphs of complete graphs, and provide bounds and realisa-
tion results. In marked contrast to domination games, we also show that changing
the order of the players can increase or decrease the size of the resulting set by an
arbitrarily large amount.
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Abstract

Let Γ be a finite group with SΓ = {s ∈ Γ|s = s−1} and TΓ = {t ∈ Γ|t ̸= t−1}.
The inverse graph of a finite group Γ, denoted by IG(Γ), is a graph whose set of
vertices is Γ and two distinct elements a, b ∈ Γ are adjacent if ab ∈ TΓ. The rainbow
connection number of a connected graph G, denoted by rc(G), is the minimum
number of colors needed to color the edges of G such that every two distinct vertices
of G are connected by a path whose all edges are colored differently. In this paper,
we discuss three aspects of the rainbow connection number of the connected inverse
graph of a finite group. First, we propose a new upper bound for the rainbow
connection number of the connected inverse graph of a finite group. It is known
from [1] that the upper bound is |TΓ|+m+ 2, with m = |{s ∈ SΓ|st = t−1s for all
t ∈ TΓ}|. In this paper, we propose 4 +m as a new upper bound. This is a better
upper bound since |TΓ| ≥ 2 for any finite group Γ whose IG(Γ) is connected. Second,
we generalize the sufficient condition for a finite group Γ to have rc(IG(Γ)) = 2.
It has been proven in [1] that for a finite group Γ, rc(IG(Γ)) = 2 if st = ts for
every s ∈ SΓ and every t ∈ TΓ. In this paper, we prove that for a finite group Γ,
rc(IG(Γ)) = 2 if st ̸= t−1s for every s ∈ SΓ and every t ∈ TΓ. At last, we show that
for a finite group Γ and k ≥ 2, if rc(IG(Γ)) = k, then every element of Γ can be
expressed as a product of r elements of TΓ, with r ≤ k.
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Abstract

A neural network can be seen as a directed graph with a loop, or we also call it a
quiver. The quiver that is used for the neural network is called a quiver network. We
will use a quiver arranged by layer to make a quiver network. A quiver network will
be a neural network if we give a quiver representation. The quiver representation
is a pair of a sequence of vector spaces and linear transformations. The vertices
of the quiver will index the sequence of vector spaces, and the arrows will index
the sequence of linear transformation in the quiver without the loops. Using quiver
representation, we will see the morphism concept; then, we can form a moduli space.
Using the moduli space, we can simplify the calculations in neural networks.
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Abstract

It is known that an ordered ρ-labeling (also known as a ρ+-labeling) of a bipartite
graph G of size m can be used to obtain a cyclic G-decomposition of K2mt+1 for
every positive integer t. We show that the generalized Petersen graphs P (4n, 2n−1)
admits a ρ+-labeling for every positive integer n.
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Abstract

The general position problem consists of finding a set S of vertices in a graph
G such that, for any two vertices u, v ∈ S no other vertex w ∈ S lies on a shortest
path between u and v. A lower general position set is a smallest general position
set such that, if you try to add another vertex z ∈ V (G) − S to the set S, S will
no longer be in general position [1]. This is essentially the worst case outcome for
a greedy algorithm when constructing a general position set.

Cartesian products are an active area of research in the general position problem
(see for example [2] and [3]). In this talk we will discuss lower general position sets
in Cartesian products of graphs. We investigate products of graph families including
cycles, complete graphs and Kneser graphs and explore the relationship between
the lower gp-number of the product and the lower gp-number of its factors.

To give bounds for the lower gp-number of any Cartesian product, it turns out
to be useful to consider general position sets S with the special property that, for
any vertex u ∈ V (G)−S, there is a shortest path in G containing u as an endpoint
and two vertices of S; we call such a set a terminal set. It is not obvious that such
a set always exists; however, we conjecture that every graph has a terminal set and
present an algorithmic proof that graphs with diameter two or three have terminal
sets, and also show that chordal graphs have terminal sets.
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Abstract

LetG = (V (G), E(G)) be a simple graph,D be a non-empty subset of [0, diam(G)],
D-neighborhood of a vertex x be ND(x) = {y ∈ G|d(x, y) ∈ D}, and D-degree
of a vertex x be |ND(x)|. A D-antimagic injection f of a graph G is a map
f : V (G) → [1, N ] such that all D-vertex weights are different, where the D-vertex
weight of a vertex x is Σy∈ND(x)f(y). For a particular graph class X of order n, the
smallest possible N is called Da(X , n). In the case that N = |V (G)|, f is called
a D-antimagic labeling of G. It is obvious that a graph containing two vertices
with the same D-neighborhood does not admit a D-antimagic labeling. Recently,
Simanjuntak et al. [3] conjectured that the converse of the previous statement is
also true.

This talk uses Alon’s Combinatorial Nullstelensatz [1] to provide partial evidence
for Simanjuntak et al.’s conjecture. We prove the {1}-antimagicness of graphs with
leaves, a generalization of a result for trees by Llado and Miller [2]. We also provide
an upper bound for Da(G∆D

, n), where G∆D
is the graph class where ∆D is the

maximum D-degree. Finally, for two particular distance sets D = {i} and D =
{0, i}, we provide better upper bounds of Da(X , n), for a special graph class X .
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Abstract

The study of DNA splicing and its relationship with graph theory has gained
increasing attention in genomics research. DNA splicing involves the fragmentation
of genomes into smaller segments for analysis, while graph theory provides a math-
ematical framework for representing and analyzing complex relationships between
objects. This research explores the intersection of DNA splicing and graph theory,
with a focus on their applications in sequence analysis and genome assembly. We
present a case study where we apply graph cutting techniques to a real-world DNA
splicing dataset. The results demonstrate the utility of graph theory in resolving
complex assembly problems, highlighting its potential for improving the accuracy
and efficiency of genome assembly.
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Abstract

In this talk we consider an algorithm for determining a basis for the Terwilliger
and quantum adjacency algebras of a distance-regular graph with respect to some
vertex x. For the Terwilliger algebra, we consider the generating set containing all
nonzero E∗

hAiE
∗
j , where E

∗
i and Ai respectively denote the i-th dual idempotent

with respect to x and the i-th distance matrix. For the quantum adjacency algebra,
we consider the generating set consisting of the raising, flat, and lowering matrices.
The naive algorithm consists of iteratively taking the products of member pairs of
the generating set and adding to the set any products not in its span, until a basis
is obtained. We explore some optimizations to the algorithm, among them sorting
the vertices of the graph according to the distance from x, which will produce
generating matrices with a block-matrix structure reducing the number of matrix
multiplications required.
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Abstract

In this paper, two types NP-hard optimization problems on graph are discussed:
the detour metric dimension and the bi-metric dimension. Both are present in many
diverse areas, including pattern recognition, monitoring the movement of robots
on a network, and analyzing the structural properties of chemical structures. The
metric dimension dim(G) of graph G is the minimum number of vertices such that
every vertex of G is uniquely determined by its vector of distances to the chosen
vertices. This concept was developed into the detour metric dimension Dβ(G) and
the bi-metric dimension βb(G), by considering the detour distance of two vertices.
To solve these two problems on large graphs, a computational approach is needed.
Ant colony optimization, a probabilistic based metaheuristic algorithm is designed
for finding the detour distance. Results prove the capabilities of the hybridation of
ant colony optimization algorithm and the binary gray wolf optimization algorithm
to search the detour metric dimension and the bi-metric dimension.
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Abstract

We consider fractional hedonic games, a subclass of modeling coalition formation
games on graphs based on individual preferences in which vertices represent agents
and the weight of an edge (i, j) denotes the value that agent i has for agent j. In this
work, we deal with fractional hedonic games on undirected and unweighted graphs,
which are called simple and symmetric fractional hedonic games [1]. In fractional
hedonic games, a coalition structure is represented by a partition of the vertices,
where each set represents a coalition. Given a coalition structure, the utility of each
agent is defined as the average weights of its incident edges. The sum of the utilities
of each agent is called the social welfare. One of the socially desirable coalition
structures is one that maximizes social welfare and such a coalition structure is
said to be social optimum. On the other hand, a coalition structure is said to be
stable when no agent can increase its utility by deviating to another coalition.
Note that the social optimum is not necessarily stable. To measure the efficiency of
a stable solution, the Price of Stability (PoS) is defined as the total utility of the
social optimum divided by the total utility of the coalition structure that maximizes
social welfare in stable coalition structures.

The previous studies imply that the existence of triangles might cause the gap
between the lower bound and upper bound of PoS [2]. In this work, we consider two
types of graph classes containing many triangles: split graphs and block split graphs.
We give upper bounds of PoS on these graph classes. Here, a graph G = (V,E) is
called block if every biconnected component in G is a clique. A split graph is a
graph whose vertex set can be partitioned into a clique K and an independent set
I, such that each vertex in I is adjacent to only vertices in the clique K. A block
split graph is split and block. We show the following theorems.

Theorem 1. For any split graph G, PoS(G) ≤ 0.70711
√
n+ 1.2519.

Theorem 2. For any block split graph G, PoS(G) ≤ 3.
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Abstract

A subset S of vertices of a graph G is in general position if no shortest path
between a pair of vertices in S contains a third vertex of S [1, 2]. S can be viewed
as a set of robots standing on the specified vertices of G and sending signals to each
other, such that each pair of robots can communicate without being intercepted
by any other robot. This is a static system; in a more realistic setting, the robots
would be able to move through the network.

Therefore we study the following dynamic version of the general position prob-
lem: how many robots may be assigned to the vertices of a graph G such that the
robots can visit every vertex of the graph whilst always remaining in general po-
sition. The largest possible number of robots in such a configuration is called the
mobile position number Mobgp(G). We give some bounds for the mobile position
number in terms of other graph invariants and give exact values for families in-
cluding block graphs, line graphs of complete graphs, unicyclic graphs and Kneser
graphs. We close with some open problems.
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[2] P. Manuel & S. Klavžar, A general position problem in graph theory. Bull. Aust.
Math. Soc. 98( 2) (2018), 177-187.

80



Enumerate All Routes on a Doughnut

Yasuko Matsui and Shin-ichi Nakano

tyasuko@tokai-u.jp, nakano@gunma-u.ac.jp

Tokai University, Gunma University

Abstract

In this talk we consider a very restricted version of the drawing problem. Given
a matching M = (U ∪ V,E) as a bipartite graph, two concentric circles, the cyclic
ordering of the vertices in U and the cyclic ordering of the vertices in V , we wish
to draw M with the minimum number of edge crossings so that the vertices in U
are on the smaller circle with the given cyclic ordering and the vertices in V are on
the larger circle with the given cyclic ordering. We call the problem the doughnut
routing problem. We design an O(n3) time algorithm to solve the problem. The
main idea of the algorithm is a reduction to a set of the minimum length generator
sequence problems. Moreover we propose an enumeration algorithm for optimal
solutions of the doughnut routing problems by using Reverse-search algorithm.
Our algorithm implicitly defines a tree structure for all optimal solutions then
enumerates all optimal solutions based on the tree.
Keywords: doughnut routing problem, minimum length generator sequence prob-
lem
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Abstract

The notion of poset matroids is one of generalizations of matroids. A poset
matroid is a pair of a poset P and a collection F of ideals of P satisfying several
conditions. The poset matroid intersection problem is a problem to find a largest
common independent ideal for two poset matroids. While a good characterization
for intersection of poset matroids was given, there is no known efficient algorithm
to solve the poset matroid intersection problem. In our paper, we show that the
poset matroid intersection problem can be solved efficiently for poset matroids on
a (2+ 1)-free poset.

1 Introduction and Preliminaries

The notion of poset matroids is one of generalizations of matroids ([1], [2]). Let P = (E,≤)
be a poset. A subset I ⊆ E is called an ideal of P if we have x ∈ I whenever y ∈ I and
x ∈ E with x ≤ y. For a subset X ⊆ E, let Min(X) denote the set of all minimal elements
of X in P .

Definition 1. Let P = (E,≤) be a poset and F be a collection of ideals of P . The pair
of (P,F) is called a poset matroid if it satisfies the following conditions.

(i) ∅ ∈ F .

(ii) If X ⊆ Y ∈ F and X is an ideal of P , then X ∈ F .

(iii) If X, Y ∈ F and |X| < |Y |, there exists an element e ∈ Min(Y \ X) such that
X ∪ {e} ∈ F .

For a poset matroid (P,F), each ideal in F is said to be independent and each maximal
independent ideal is called a base.

For two poset matroids (P,F1) and (P,F2), an element in F1 ∩ F2 is called a common
independent ideal. The poset matroid intersection problem is a problem to find a largest
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common independent ideal for two poset matroids. While a good characterization for the
size of a largest common independent ideal was given in [6], any efficient algorithm for
this problem is not known. Another generalization of the matroid intersection problem,
called the poset matching problem, was studied in [4]. It is shown that the poset matching
problem can be solved efficiently for a certain class of bipartite graphs in [4].

In our paper, we show that the poset matroid intersection problem can be solved efficiently
for poset matroids on a certain poset.

2 Main Result

We give, first, the definition of (2+ 1)-free posets.

Definition 2. A poset is said to be (2+1)-free if it does not contain 2+1 as an induced
subposet, where 2+ 1 is the disjoint union of 2-element chain and an element.

Our main result is as follows.

Theorem 1. The poset matroid intersection problem can be solved in polynomial time
for any two poset matroids on a (2+ 1)-free poset.

In our paper, we prove the theorem by using the fact that matroid intersection problem
can be solved efficiently ([3], [5]).
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Abstract

For an undirected weighted graph G = (V,E) and a vertex subset S ⊆ V , we
define a function φG(S) := (1 − α) ·m(S) + α ·m(S, V \ S), where α ∈ [0, 1] is a
real number, m(S) is the sum of weights of edges having two endpoints in S, and
m(S, V \ S) is the sum of weights of edges having one endpoint in S and the other
in V \ S. Given an undirected weighted graph G = (V,E) and a positive integer k,
Max (Min) α-Fixed Cardinality Graph Partitioning (Max (Min) α-FCGP)
is the problem to find a vertex subset S ⊆ V of size k that maximizes (minimizes)
φG(S). This problem is a generalization of many NP-hard graph optimization prob-
lems such as Densest (Sparsest) k-Subgraph, Max (Min) k-Partial Vertex
Cover, and Max (Min) (k, n−k)- Cut. For the parameterization by the solution
size k plus degeneracy d, Max α-FCGP is known to be W[1]-hard for α ∈ [0, 1/3],
but Max (Min) α-FCGP is fixed-parameter tractable for α ∈ [1/3, 1] in the max-
imization case and for α ∈ [0, 1] in the minimization case if an input graph is
unweighted [?]. Panolan and Yaghoubizade propose a 2kd+k(kd)O(log(kd))nO(1)-time
algorithm for Max k-Partial Vertex Cover (equivalently, Max 1/2-FCGP) on
weighted graphs [?].

In this talk, we show that Max α-FCGP for α ∈ [1/3, 1] and Min α-FCGP for α ∈
[0, 1/3] can be solved in time 2kd+k(kd)O(log(kd))nO(1) by extending the algorithm
for Max k-Partial Vertex Cover proposed by Panolan and Yaghoubizade [?].
We also give a 2kd+O(k)(kd)O(log(kd))nO(1)-time algorithm for the connected version
of Max (Min) α-FCGP.
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Abstract

This work shows new results on the complexity of games Hanano and Jelly-No
with various constraints on the width of the board and number of colours.

Hanano and Jelly-No are both one-player, 2D side-view puzzle games created
by Qrostar and available online [1]. They consist of a dynamic board containing
fixed platforms and coloured blocks which can be moved to the right or left by the
player and are subject to gravity. The goal of both games is to move the coloured
blocks in order to reach a specific configuration and make them interact with other
elements of the game. In Hanano the goal is to make all the coloured blocks bloom
by making contact with flowers of the same colour. In Jelly-No the goal is to merge
all coloured blocks of a same colour, which also happens when they make contact.

Hanano was proven by Michael C. Chavrimootoo [2] to be PSPACE-Complete
under the restriction that all movable blocks are the same colour. Jelly-No was
proven by Chao Yang [3] to be NP-Complete under the same restriction and NP-
Hard in the general case.

We show that this result holds under the restriction that the width of the board
is limited to 5 columns, and that 1-colour Hanano is NP-Hard even when the width
is limited to 6 columns. Finally, we show that Jelly-No is PSPACE-Complete with
two colours and the use of black jellies.

A full version of this paper can be found on the following page:
https://www.irif.fr/~vmitsou/jelly.pdf

Keywords: Combinatorial games ; Complexity ; Hanano Puzzle ; Jelly-No Puz-
zle ; Motion planning ; NP-Hard ; PSPACE-Complete.
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Abstract

YOMEN is a 2-player 3D code-breaking game released in 2020. A code-breaking
game is a game in which two players are divided into a code maker and a code
breaker, and the code breaker tries to find the code defined by the code maker in
a way appropriate to each game. Code-breaking games include Mastermind and
Wordle, and the number of questions required to identify the code is well studied;
e.g., Mastermind [1], generalized Mastermind [2], and Wordle [3]. In the formal rule
of YOMEN, both of two players act as a code maker and a code breaker, and try
to find the opponent’s code, but in this study, we focus on the role of the code
breaker for a given code. In YOMEN, a code is an arrangement of three blocks
colored in red, yellow, and black on 3 × 3 cells, so that it satisfies certain rules.
The code breaker can ask two types of questions, called side view about a row or
column and top view about a cell. For the question about a side view, the code
maker answers the colors of blocks on the corresponding row or column, and for the
question about a top view, she answers the color of the top block with the height
from the corresponding cell. In this study, we assume that the code breaker is not
allowed to announce the arrangement by unconvinced guesswork, but only when
the previous questions can identify the arrangement made by the code breaker. We
say that an arrangement is identified when there is a unique arrangement satisfying
answers to questions, and the optimal number of questions is the minimum number
of questions required to identify an arbitrary legal arrangement. We obtain the
following three theorems on the number of legal arrangements and the upper and
lower bounds on the optimal number of questions for YOMEN.

Theorem 1. The total number of legal arrangements in YOMEN is 19272.

Theorem 2. The optimal number of questions for YOMEN is at least 6.

Theorem 3. The optimal number of questions for YOMEN is at most 8.
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Abstract

Sudoku, also called Number Place, is a pencil puzzle, where an instance is an
incomplete 9×9 Latin square further partitioned into nine 3×3 subgrids. The digits
put in advance are called clues. The goal of Sudoku is to complete a 9 × 9 Latin
square, each subgrid of which contains all digits from one to nine, i.e., every digit
occurs exactly once. Since one subgrid corresponds to one constraint, together with
the constraints for the Latin square, the total number of constraints on Sudoku is
9+9+9 = 27. In the study of Latin square completion, clues realizing the uniqueness
of the solution with the minimum size is called a critical set. By defining a critical
set of Sudoku similarly, we can say that the size of a critical set of Sudoku is
17. Nonomino Sudoku is a generalized variant of Sudoku, where a nonomino is a
polyomino of order 9. The basic rule of Nonomino Sudoku is the same as Sudoku,
but an instance is an incomplete 9× 9 Latin square partitioned into 9 nonominoes,
and the goal is to complete the Latin square such that each nonomino contains all
digits.

In this study, we further generalize Nonomino Sudoku to n-omino Sudoku, which
is defined on an n× n grid. We prove the following theorem.

Theorem 1. The size of a critical set of n-omino Sudoku is n− 1.

We introduce the notion of degeneracy for n-omino Sudoku. In Nonomino Su-
doku, a nonomino can coincide with a column or row. Although n× n Sudoku as a
generalization of the ordinary Sudoku has 3n constraints, the number of constraints
of n-omino Sudoku can be smaller than 3n due to such coincidences, and then we
say that some constraints degenerate. We define the degeneracy of an n-omino Su-
doku instance as the number of nonominoes that coincide with a column or row.
Thus, an n-omino Sudoku instance with degeneracy n is just an instance of the
Latin square completion. It is known that the size of a critical set of n × n Latin
square (i.e., n-omino Sudoku with degeneracy n) is at most ⌊n2/4⌋. The following
is a corollary of the above theorem for n-omino Sudoku with a small degeneracy.

Corollary 2. There exists an n-omino Sudoku instance with degeneracy 0 or 1
such that its critical set has size n− 1.

Intuitively, an instance with a small number of clues tends to have more solu-
tions, or more clues tend to make a solution unique. Thus, we might expect that
an instance with no clue has many solutions. However, there is an n-omino Sudoku
instance with no clue that has no solution. More specifically, we have the following.

Theorem 3. Let k and n be positive integers satisfying n ≤ 2k + 4. Then, there
is an n-omino Sudoku instance with degeneracy k and no clue such that it has no
solution.
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On variations of Yama Nim

∼ What happens if you return tokens
in Nim games? ∼
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(This talk is based on joint work with Takahiro Yamashita.)

Abstract

Yama Nim is a 2 heaps nim where players take more than 2 tokens from one
heap, and return 1 token to the other heap. Triangular Nim is a generalization of
Yama Nim, where the players are allowed to return any positive number of tokens,
as far as the total number of the tokens decreases. Whoever removes the last token
wins (normal play). Both Yama Nim and Triangular Nim have the same set of the
P-positios, namely {(x, y) ∈ Z2

≥0 | − 1 ≤ x− y ≤ 1}.
We also computed the Grundy numbers for these games for N -Positions: For

Yama Nim, if (x, y) is in the N -Position (in other words, if |x−y| > 1), the Grundy
number is Min (x, y) + 1. The Grundy numbers for the Triangular Nim have more
interesting behavior: When (x, y) is in the N -position with x < y, for each Grundy

number g > 0, choose d ∈ Z>0 so that
d(d− 1)

2
≤ g <

d(d+ 1)

2
, and consider the

arithmetic progression

a0 = g + 1, a1 = g + 1 + d, a2 = g + 1 + 2d, . . . , ak = g + 1 + kd, . . . .

If (x, y) = (ak, ak+1) for some k ∈ {0, 1, 2, 3, . . .}, then the Grundy number for (x, y)
is g. When (x, y) does not fit into any of these patterns, then the Grundy number
for (x, y) is x+ y − 1.

We also considered a Wythoff twist of these Nim games. In Triangular α-Wythoff
Nim (with α ∈ Z≥0), the player is allowed to take tokens, either in the Triangular
Nim way, or she/he can choose to take tokens from both heaps, at least 1 token
from each, say i > 0 tokens from the first heap and j > 0 tokens from the second
heap, as far as |i− j| ≤ α. The set of P-positions for the Triangular 0-Wythoff Nim
in {(x, y) |x ≤ y} is

{(0, 0), (0, 1), (1, 3), (3, 6), (6, 10), (10, 15), (15, 21), (21, 28), (28, 36), . . .},

in other words, triangular numbers 0, 1, 3, 6, 10, 15, . . . appear in the description of
the set of P-positions. Also for the P-positions for the Triangular 1-Wythoff Nim
in {(x, y) |x ≤ y} is

{(0, 0), (0, 1), (1, 4), (4, 9), (9, 16), (16, 25), (25, 36), (36, 49), (49, 64), . . .},

in other words, square numbers 0, 1, 4, 9, 16, 25, 36, . . . appear. Similar patterns ap-
pear (Pentagonal numbers, Hexagonal numbers, . . .) for α = 2, 3, . . ..

We will also give more rules, with more sequences, or another new patterns, for
variations of Yama Nim.
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Grundy Numbers of Three-Dimensional Chocolate
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Abstract

Chocolate-bar games are variants of the CHOMP game. A two-dimensional
chocolate bar is a rectangular array of squares with some squares removed. There
is a bitter square at the position (0, 0), and the height and the depth of the choco-
late bar are defined by two functions f and g. Two players take turns and cut
the chocolate bar along a horizontal or vertical line into two parts and eat that
part that does not contain the bitter square. The player who leaves the opponent
with the single bitter square is the winner. In prior work, the authors studied the
two-dimensional case when g(i) = 0, and in the present article, they treat the
case that g(i) is not constantly zero. They characterize functions f, g such that the
Sprague–Grundy value of CB(f, g, x, y, z) is x⊕y⊕ z. Then, they apply the results
of two-dimensional chocolate bars to three-dimensional chocolate bars.

1 Introduction

Let Z≥0 be a set of non-negative numbers. Chocolate-bar games are variants of the
CHOMP game. A two-dimensional chocolate bar is a rectangular array of squares in
which some of the squares are removed. A bitter square printed in black is included in
some part of the bar. Figures 1, 3, 4 display examples of two-dimensional chocolate bars.
Each player takes their turn to break the bar in a straight line along the grooves into two
parts, and eats the part without the bitter square. The player who leaves the opponent
with the single bitter block (black block) is the winner.

A three-dimensional chocolate bar is a three-dimensional array of cubes in which a bitter
cubic box printed in black is included in some part of the bar. Figures 5 and 7 display
examples of a three-dimensional chocolate bar.

Each player takes their turn to cut the bar on a plane that is horizontal or vertical along
the grooves into two parts, and eats the part without the bitter cubic box. The player who
leaves the opponent with the single bitter cube is the winner. Examples of cut chocolate
bars are depicted in Figures 8, 9, and 10.

Figure 1: Figure 2: Figure 3: Figure 4: Figure 5:
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Figure 6: Figure 7: Figure 8: Figure 9: Figure 10:

Definition 1. Let g, h be monotonically increasing functions. A two-dimensional choco-
late bar is a rectangular array of squares with some squares removed. There is a bitter
square at the position (0, 0). There are z + 1 columns of squares, and for i ∈ Z≥0 such
that i ≤ z, the height of the i-th column is given by min(g(i), x) + 1, and the depth of the
i-th column is given by min(h(i), y)+1. We denote this chocolate bar by CB(g, h, x, y, z).

The most simple two-dimensional chocolate bar is a rectangular bar of chocolate with
a bitter corner, as shown in Figure 1. Because the horizontal and vertical grooves are
independent, an m × n rectangular chocolate bar is similarly structured as the game
of Nim, which includes heaps of m − 1 and n − 1 stones. Therefore, the chocolate-bar
game (Figure 1) is mathematically the same as Nim, which includes heaps of 5 and 3
stones (Figure 2). Because the Grundy number of the Nim game with heaps of m−1 and
n − 1 stones is (m − 1) ⊕ (n − 1), the Grundy number of this m × n rectangular bar is
(m− 1)⊕ (n− 1).

Therefore, it is natural to search for a necessary and sufficient condition, wherein a choco-
late bar may have a Grundy number calculated using the Nim-sum as the height and width
of the two-dimensional chocolate bars.

We have already presented the necessary and sufficient conditions in [1] when the depth
of chocolate bar is zero. In the present article, we study chocolate bars when the depth
is not zero, such as Figure 4 and Figure 7.

For any position p of game G, there is a set of positions that can be reached by precisely
one move in G, which we denote as move(p).

Let p be a position of an impartial game. The associated Grundy number is denoted by
G(p), and is recursively defined by G(p) = mex{G(h) : h ∈ move(p)}.
For any position g of G, GG(g) = 0, if and only if g is a P-position. Therefore, Grundy
numbers are an important research topic in combinatorial game theory.

Definition 2. A monotonically increasing function h is said to have the NS property if⌊
z
2i

⌋
=

⌊
z′
2i

⌋
for some z, z′ ∈ Z≥0, and some natural number i, then

⌊
h(z)
2i−1

⌋
=

⌊
h(z′)
2i−1

⌋
.

Theorem 1. Let g, h be monotonically increasing functions and Gg,h(x, y, z) be the Grundy
number of CB(g, h, x, y, z). Then g, h satisfy NS property in Definition 2 if and only if
Gg,h(x, y, z) = x⊕ y ⊕ z.
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Abstract

The authors present formulas for the winning positions of the previous player’s
positions of a variant of restricted Nim. In this study, we investigate the case that in
k-th turn, you can remove f(k) stones at most, where f is a function whose values
are natural numbers.

1 Introduction and a Restricted Nim

The authors present formulas for the winning positions of the previous player’s positions
of a variant of Maximum Nim. Let Z≥0 and N represent the sets of non-negative integers
and natural numbers, respectively.

The classic game of Nim is played with stone piles. A player can remove any number
of stones from any one pile during their turn; the player who takes the last stone is
considered the winner.

There are many variants of the classical game of Nim. In Maximum Nim, we place an
upper bound f(n) on the number of stones that can be removed in terms of the number
n of stones in the pile. As for the research of Maximum Nim, see [1].

In this study, we investigate the case that in k-th turn, you can remove f(k) stones at
most, where f is a function whose values are natural numbers. This seems to be a new
restriction on the number of stones to be taken.

Definition 1. Let m ∈ N and f is a function whose values are natural numbers. Suppose
there is a pile of stones, and two players take turns removing stones from the pile. In
kth turn, the player is allowed to remove at least one stone and at most f(k) stones. The
player who removes the last stone is the winner.

The restricted nims that we study in the present article are impartial games without
draws, there will be only two kinds of positions.

Definition 2. (a) A position is referred to as a P-position if it is a winning position for
the previous player (the player who just moved), as long as he/she plays correctly at every
stage.
(b) A position is referred to as an N -position if it is a winning position for the next
player, as long as he/she plays correctly at every stage.
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Definition 3. We denote by (n, k) the position of the game when a player removes a
stones in the k-th turn and the number of stones is n,

Definition 4. For u ∈ N, the set of all the positions that can be reached from position
(u, k) is defined as move(u, k). For any t ∈ Z≥0, we have move(u, k) = {(u − t, k + 1) :
t ∈ N and 1 ≤ t ≤ min(u, f(k))}.

1.1 When f(k) = mk for a fixed natural number m

When f(k) = mk for a fixed natural number m, we can describe the set of P-positions
by Theorem 1.

Theorem 1. For n ∈ Z≥0, let Pm
k,n = {n(mn+m(k−1)+1)+i, k) : i ∈ Z≥0 and i ≤ mn},

Pm
k = ∪{Pk,n : n ∈ Z≥0}, and Pm = ∪{Pm

k : k ∈ N}. Then, Pm is the set of P-positions.

The graphs of the case when f(k) = k and f(k) = 4k are presented in figures 1 and 2.
For the list (n, k) in the graphs, the horizontal coordinate n is for the number of stones,
and the vertical coordinate k shows that the player removes stones at kth turn from this
position.
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1.2 Cases for other types of functions.

The authors have calculated the sets of P-positions for various types of functions f(k)
by computers. If we compare graphs in figures 1, 2, 3 and 4, it seems that graphs look
similar when f(k) is a polynomial of k.

When f(k) = ⌊log2k⌋+1 or f(k) = ⌊log10k⌋+1, we get an interesting graph. See figures
5 and 6. When f(k) is the k-th number of Finonacci sequence or Tribonacci sequence,
we also get interesting graphs! See figures 7 and 8. The authors have not discovered any
formula that describes these sets of P-positions.
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Abstract

The public’s reaction to the government’s decision to increase fuel prices as a
consequence of the surge in global crude oil prices has generated significant interest
and debate. Analyzing the classification of public responses to a policy is essential
as it provides insights into identifying the most appropriate timing for implement-
ing policies while minimizing negative reactions. Therefore, motivated by [1] this
study aims to apply the Support Vector Machine (SVM) algorithm to classify public
sentiments in response to the new fuel price in 2022. The data used in this research
were collected from Twitter using web scraping techniques, specifically leveraging
the Python library, snscrape. The scraped data is preceded by a text preprocessing
stage before it can be used in the classification model development. The model
was built using Python in the Google Collaboratory Integrated Development En-
vironment (Google Collab IDE), and the SVM algorithm was applied to categorize
public opinions into positive (+) or negative (-) responses. The resulting classifi-
cation model was subjected to validation testing, employing the confusion matrix
method [2], which yielded an accuracy rate of 81%. The analysis indicated that
63.55% of the public had a negative (-) response, while 36.45% expressed a positive
(+) sentiment toward the government’s policy. Furthermore, the study revealed a
relationship between the number of iterations and the model’s accuracy, with in-
creasing iterations leading to a convergence toward 81%. The research findings were
visualized using Word Clouds, Pie Charts, and a simple Graphical User Interface
(GUI) for user accessibility. Considering the large proportion of negative responses
from the public to the government’s decision to raise fuel prices at that time, it
became evident that it was not the opportune moment for implementing the policy.
The government’s repeated delays in executing the new fuel price in 2022 demon-
strate their consideration of the appropriate timing, aiming to minimize negative
public reactions. Thus, in the future studies focusing on the classification of public
responses will be strategic as the study playing an integral role in Decision Support
Systems (DSS) for making timely and well-informed decisions.
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Toichika is NP-Complete
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Abstract

Toichika is a pencil-and-paper logic puzzle first published by a Japanese com-
pany Nikoli. The puzzle consists of a rectangular grid divided into polyominoes
called regions, with some cells already containing an arrow. The player has to put
arrows pointing in horizontal or vertical direction into cells according to the follow-
ing rules.

1. Each region contains exactly one arrow.

2. Two arrows pointing towards each other with no other arrow between them
form a pair; all arrows must be paired.

3. The paired arrows cannot be in horizontally or vertically adjacent regions.

We show that the problem of deciding whether a given Toichika instance has a
solution is NP-complete by a reduction from the 3-SAT problem.
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Abstract

In this talk, we will take a look at various category of games that has been
proposed so far from category of open games ([1], [2], [3]) to a category of graphs
generated from games ([4]).
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Abstract

In this paper, we consider partizan restricted chocolate bar games. In partizan
restricted chocolate bar games, there are players designated as Left and Right and
chocolate bars with black and white stripes. Suppose that they have a chocolate bar
with n black square and m white square. Left cuts the chocolate bar in two parts,
and she can eat the part with equal to or less than ⌈n2 ⌉ black squares. Similarly,
Right cuts the bar and eats the part with equal to or less than ⌈m2 ⌉ white squares. A
player loses when they cannot eat the remaining chocolate bar. We provide formulas
that describe the winning positions of the previous player, Right, and Left players.
We also present a conjecture on three-dimensional partisan chocolate bar game.

1 Introduction

In the present work, we consider a partisan chocolate bar game with restrictions on the
number of black or white squares to be eaten. We denote the set of natural numbers as
N.

There are other types of restricted chocolate games, where the color of the chocolate is
the same for each square. See [1]

Let the name of two players be Left (using she as a pronoun) and Right (using he as a
pronoun). Here we use chocolate bars with black and white stripes. See Figures 1, 2, 3,
and 4 for examples. The use of this black and white chocolate bar was suggested by Prof.
R. J. Nowakowski when one of the authors discussed a partizan version of chocolate bar
games at Combinatorial Game Theory Colloquium IV.

Suppose that they have a chocolate bar with n black square and m white square.

Left cuts the chocolate bar into two parts, and she eats the part with fewer than or equal
to ⌈n

2
⌉ black blocks. When there is only a one-by-one white chocolate bar in figures 5,

she can eat it.

Similarly, Right cuts the chocolate bar into two and eats the part with fewer than or
equal to ⌈m

2
⌉ white blocks. When there is only a one-by-one black chocolate bar in figures

5, he can eat it.

A player loses in the game when she or he cannot eat the remaining chocolate bar.
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Here, we have four outcome classes.
(a) A position is called a P-position if it is a winning position for the previous player
(the player who just moved), as long as he/she plays correctly at every stage.
(b) A position is called an N -position if it is a winning position for the next player, as
long as he/she plays correctly at every stage.
(c) A position is referred to as a L-position if it is a winning position for L, as long as
she plays correctly at every stage.
(d) A position is referred to as an R-position if it is a winning position for R, as long as
he plays correctly at every stage.

Theorem 1. Every position of a game belongs to exactly one of four outcome classes
P-position, N -position, L-position, and R-position.

Figure 1:(5,4,1) Figure 2: (5,4,0) Figure 3: Figure 4: Figure 5:

We denote a chocolate bar by (x, y, s), where x and y are the height and the width of the
chocolate bar, respectively, and s is 1 if the square on the upper left corner is black and
0 if it is white.

According to the rule of the game, there are three ways that the game ends. A player
loses the game when there is no chocolate bar left. Player L loses when there is only 1×1
black square, and Player R loses when there is only 1× 1 white square.

Definition 1. Let Pa = {(2p, 2n(p + 1) − 2, s) : n, p ∈ N, s = 0, 1}, Pb = {(2n(p +
1) − 2, 2p, s) : n, p ∈ N, s = 0, 1} and Pc = {(2p + 1, 2p + 1, s) : p ∈ N, s = 0, 1}. Let
P = Pa ∪ Pb ∪ Pc.

Definition 2. Let La = {(2p+ 1, 2q + 1, 1) : p, q ∈ N, q ≥ 3}, Lb = {(2p+ 1, 2q + 1, 0) :
p, q ∈ N, p ≥ 3}, Lc = {(1, 2p+ 1, 0) : p ∈ N}, and
Ld = {(2p+ 1, 1, 0) : p ∈ N}. Let L = La ∪ Lb ∪ Lc ∪ Ld.

Theorem 2. We have the following (i) and (ii):
(i) The set P is the set of P-positions.
(ii) The set L is the set of L-positions.

Note that we can get the set of R-positions by substituting black and white squares in
L, and the complement of P ∪ L ∪R is N .
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Abstract

We consider a comply/constrain operator on impartial rulesets. Applied to the
rulesets A and B, on each turn, the opponent proposes one of the rulesets and the
current player complies, by playing a move in that ruleset. If the outcome table of
the comply/constrain variation of A and B is the same as the outcome table of A,
then we say that B is dominated by A. We show necessary and sufficient conditions
of “A dominates B” and some properties on comply/constrain operator. This study
is a continuation of [1].
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Abstract

Sokoban is a representative puzzle in the class of PSPACE-complete problems.
The upper bound for the complexity of Sokoban is straight forward, as it is easy
to see Sokoban∈NPSPACE, while NPSPACE=PSPACE. For the lower bound, there
are at least three quite different proofs of the PSPACE-hardness of Sokoban[1, 2, 4].
One of the most remakable theorems in computational complexity theory is that
IP=PSPACE [5]. However, it is not easy to show directly that Sokoban∈IP. Note
that telling the verifier a complete solution to a Sokoban level doesn’t work, be-
cause the solution might be of exponential length which cannot be verified in poly-
nomial time. The proof method of IP=PSPACE is not readily applied to Sokoban.
The standard proof [6] of IP=PSPACE is to show that a PSPACE-complete prob-
lem, Tqbf, is in IP. Another proof [3] shows that any PSPACE language accepted
by a deterministic Turing Machine has an interactive proof. Both proofs base on
the arithmetization technique. Sokoban is inherently non-deterministic in nature.
In this talk, we extend the arithmetization technique to non-deterministic case by
showing that Sokoban is in IP. This gives a concrete way of convincing the verifier
that a Sokoban level is solvable, but without telling the complete solution to that
level.
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